Conference Paper

Detecting Pedestrians by Learning Shapelet Features.

DOI: 10.1109/CVPR.2007.383134 Conference: 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Minnesota, USA
Source: DBLP

ABSTRACT In this paper, we address the problem of detecting pedes- trians in still images. We introduce an algorithm for learn- ing shapelet features, a set of mid-level features. These fea- tures are focused on local regions of the image and are built from low-level gradient information that discriminates be- tween pedestrian and non-pedestrian classes. Using Ad- aBoost, these shapelet features are created as a combina- tion of oriented gradient responses. To train the final classi- fier, we use AdaBoost for a second time to select a subset of our learned shapelets. By first focusing locally on smaller feature sets, our algorithm attempts to harvest more use- ful information than by examining all the low-level features together. We present quantitative results demonstrating the effectiveness of our algorithm. In particular, we obtain an error rate 14 percentage points lower (at10−6 FPPW) than the previous state of the art detector of Dalal and Triggs (1) on the INRIA dataset.



Available from