Conference Paper

Polly Cracker, Revisited

DOI: 10.1007/978-3-642-25385-0_10 Conference: Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings
Source: DBLP


We initiate the formal treatment of cryptographic constructions ("Polly Cracker") based on the hardness of computing remainders modulo an ideal over multivariate polynomial rings. We start by formalising the relation between the ideal remainder problem and the problem of computing a Gröbner basis. We show both positive and negative results. On the negative side, we define a symmetric Polly Cracker encryption scheme and prove that this scheme only achieves bounded CPA security. Furthermore, we show that a large class of algebraic transformations cannot convert this scheme to a fully secure Polly-Cracker-style scheme. On the positive side, we formalise noisy variants of the ideal membership, ideal remainder, and Gröbner basis problems. These problems can be seen as natural generalisations of the LWE problem and the approximate GCD problem over polynomial rings. We then show that noisy encoding of messages results in a fully IND-CPA-secure somewhat homomorphic encryption scheme. Our results provide a new family of somewhat homomorphic encryption schemes based on new, but natural, hard problems. Our results also imply that Regev's LWE-based public-key encryption scheme is (somewhat) multiplicatively homomorphic for appropriate choices of parameters.

Download full-text


Available from: Ludovic Perret,
17 Reads
  • Source
    • "In cryptology, the hardness of PoSSo q is now a subject of major interest, e.g. [30] [23] [24] [16] [18] [14] [17] [25] [1] [29] [15] [34] [36] [21]. In one hand, this problem is used as a trapdoor to design many cryptographic primitives, mostly in multivariate cryptography [32] [33] [37]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Polynomial System Solving (PoSSo) problem is a fundamental NP-Hard problem in computer algebra. Among others, PoSSo have applications in area such as coding theory and cryptology. Typically, the security of multivariate public-key schemes (MPKC) such as the UOV cryptosystem of Kipnis, Shamir and Patarin is directly related to the hardness of PoSSo over finite fields. The goal of this paper is to further understand the influence of finite fields on the hardness of PoSSo. To this end, we consider the so-called hybrid approach. This is a polynomial system solving method dedicated to finite fields proposed by Bettale, Faugère and Perret (Journal of Mathematical Cryptography, 2009). The idea is to combine exhaustive search with Gröbner bases. The efficiency of the hybrid approach is related to the choice of a trade-off between the two methods. We propose here an improved complexity analysis dedicated to quadratic systems. Whilst the principle of the hybrid approach is simple, its careful analysis leads to rather surprising and somehow unexpected results. We prove that the optimal trade-off (i.e. number of variables to be fixed) allowing to minimize the complexity is achieved by fixing a number of variables proportional to the number of variables of the system considered, denoted n. Under some natural algebraic assumption, we show that the asymptotic complexity of the hybrid approach is 2(3.31-3.62 log2(q)-1)n, where q is the size of the field (under the condition in particular that log(q) ≪ n). This is to date, the best complexity for solving PoSSo over finite fields (when q > 2). We have been able to quantify the gain provided by the hybrid approach compared to a direct Gröbner basis method. For quadratic systems, we show (assuming a natural algebraic assumption) that this gain is exponential in the number of variables. Asymptotically, the gain is 21.49n when both n and q grow to infinity and log(q) ≪ n.
    Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation; 07/2012
  • Source
    • "In some cases, systems of special types have to be solved, but recent proposals like the new Polly Cracker type cryptosystem [1] rely on the hardness of solving random systems of equations. This motivates the study of the complexity of generic polynomial systems. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A fundamental problem in computer science is to find all the common zeroes of $m$ quadratic polynomials in $n$ unknowns over $\mathbb{F}_2$. The cryptanalysis of several modern ciphers reduces to this problem. Up to now, the best complexity bound was reached by an exhaustive search in $4\log_2 n\,2^n$ operations. We give an algorithm that reduces the problem to a combination of exhaustive search and sparse linear algebra. This algorithm has several variants depending on the method used for the linear algebra step. Under precise algebraic assumptions on the input system, we show that the deterministic variant of our algorithm has complexity bounded by $O(2^{0.841n})$ when $m=n$, while a probabilistic variant of the Las Vegas type has expected complexity $O(2^{0.792n})$. Experiments on random systems show that the algebraic assumptions are satisfied with probability very close to~1. We also give a rough estimate for the actual threshold between our method and exhaustive search, which is as low as~200, and thus very relevant for cryptographic applications.
    Journal of Complexity 12/2011; 29(1). DOI:10.1016/j.jco.2012.07.001 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We provide an alternative method for constructing lattice-based digital signatures which does not use the "hash-and-sign" methodology of Gentry, Peikert, and Vaikuntanathan (STOC 2008). Our resulting signature scheme is secure, in the random oracle model, based on the worst-case hardness of the Õ(n1.5)-SIVP problem in general lattices. The secret key, public key, and the signature size of our scheme are smaller than in all previous instantiations of the hash-and-sign signature, and our signing algorithm is also quite simple, requiring just a few matrix-vector multiplications and rejection samplings. We then also show that by slightly changing the parameters, one can get even more efficient signatures that are based on the hardness of the Learning With Errors problem. Our construction naturally transfers to the ring setting, where the size of the public and secret keys can be significantly shrunk, which results in the most practical to-date provably secure signature scheme based on lattices.
Show more