Conference Paper

Procrastination Leads to Efficient Filtration for Local Multiple Alignment.

DOI: 10.1007/11851561_12 Conference: Algorithms in Bioinformatics, 6th International Workshop, WABI 2006, Zurich, Switzerland, September 11-13, 2006, Proceedings
Source: DBLP

ABSTRACT We describe an efficient local multiple alignment filtration heuristic for identification of conserved regions in one or more DNA se- quences. The method incorporates several novel ideas: (1) palindromic spaced seed patterns to match both DNA strands simultaneously, (2) seed extension (chaining) in order of decreasing multiplicity, and (3) procrastination when low multiplicity matches are encountered. The re- sulting local multiple alignments may have nucleotide substitutions and internal gaps as large as w characters in any occurrence of the motif. The algorithm consumes O(wN) memory and O(wN log wN) time where N is the sequence length. We score the significance of multiple alignments using entropy-based motif scoring methods. We demonstrate the per- formance of our filtration method on Alu-repeat rich segments of the human genome and a large set of Hepatitis C virus genomes. The GPL implementation of our algorithm in C++ is called procrastAligner and is freely available from


Available from: Nicole T Perna, Jun 02, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this project is the development of new techniques, both at the theoretical level and at the implementation level, for the following four kinds of logic-based tools: 1. Automated theorem provers for first-order logic. 2. Ecient decision procedures for certain logics.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The current wealth of available genomic data provides an unprecedented opportunity to compare and contrast evolutionary histories of closely and distantly related organisms. The focus of this dissertation is on developing novel algorithms and software for efficient global and local comparison of multiple genomes and the application of these methods for a biologically relevant case study. The thesis research is organized into three successive phases, specifically: (1) multiple genome alignment of closely related species, (2) local multiple alignment of interspersed repeats, and finally, (3) a comparative genomics case study of Neisseria. In Phase 1, we first develop an efficient algorithm and data structure for maximal unique match search in multiple genome sequences. We implement these contributions in an interactive multiple genome comparison and alignment tool, M-GCAT, that can efficiently construct multiple genome comparison frameworks in closely related species. In Phase 2, we present a novel computational method for local multiple alignment of interspersed repeats. Our method for local alignment of interspersed repeats features a novel method for gapped extensions of chained seed matches, joining global multiple alignment with a homology test based on a hidden Markov model (HMM). In Phase 3, using the results from the previous two phases we perform a case study of neisserial genomes by tracking the propagation of repeat sequence elements in attempt to understand why the important pathogens of the neisserial group have sexual exchange of DNA by natural transformation. In conclusion, our global contributions in this dissertation have focused on comparing and contrasting evolutionary histories of related organisms via multiple alignment of genomes.
    2nd International Workshop on Practical Applications of Computational Biology and Bioinformatics, IWPACBB 2008, Salamanca, Spain, 22th-24th October 2008; 01/2008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During evolution, large-scale genome rearrangements of chromosomes shuffle the order of homologous genome sequences ("synteny blocks") across species. Some years ago, a controversy erupted in genome rearrangement studies over whether rearrangements recur, causing breakpoints to be reused. We investigate this controversial issue using the synteny block's for human-mouse-rat reported by Bourque et al. and a series of synteny blocks we generated using Mauve at resolutions ranging from coarse to very fine-scale. We conducted analyses to test how resolution affects the traditional measure of the breakpoint reuse rate. We found that the inversion-based breakpoint reuse rate is low at fine-scale synteny block resolution and that it rises and eventually falls as synteny block resolution decreases. By analyzing the cycle structure of the breakpoint graph of human-mouse-rat synteny blocks for human-mouse and comparing with theoretically derived distributions for random genome rearrangements, we showed that the implied genome rearrangements at each level of resolution become more "random" as synteny block resolution diminishes. At highest synteny block resolutions the Hannenhalli-Pevzner inversion distance deviates from the Double Cut and Join distance, possibly due to small-scale transpositions or simply due to inclusion of erroneous synteny blocks. At synteny block resolutions as coarse as the Bourque et al. blocks, we show the breakpoint graph cycle structure has already converged to the pattern expected for a random distribution of synteny blocks. The inferred breakpoint reuse rate depends on synteny block resolution in human-mouse genome comparisons. At fine-scale resolution, the cycle structure for the transformation appears less random compared to that for coarse resolution. Small synteny blocks may contain critical information for accurate reconstruction of genome rearrangement history and parameters.
    BMC Bioinformatics 10/2011; 12 Suppl 9(Suppl 9):S1. DOI:10.1186/1471-2105-12-S9-S1 · 2.67 Impact Factor