Conference Paper

The Andes Physics Tutoring System: Five Years of Evaluations.

Conference: Artificial Intelligence in Education - Supporting Learning through Intelligent and Socially Informed Technology, Proceedings of the 12th International Conference on Artificial Intelligence in Education, AIED 2005, July 18-22, 2005, Amsterdam, The Netherlands
Source: DBLP

ABSTRACT Andes is a mature intelligent tutoring system that has helped hundreds of students improve their learning of university physics. It replaces pencil and paper problem solving homework. Students continue to attend the same lectures, labs and recitations. Five years of experimentation at the United States Naval Academy indicates that it significantly improves student learning. This report describes the evaluations and what was learned from them.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ITSs (Intelligent Tutoring Systems) provide a way of addressing some of the issues that the more traditional CAI (Computer Aided Instruction) systems do not address - the individual learning needs and individual learning abilities and levels of users - so that the user is in control of their learning experience. An ITS needs to be able to provide an explanation, for a real world situation, that successfully meets the needs of the user. To ensure relevant explanation content requires the ITS be based on sound planning principles and tutoring knowledge as well as knowledge of the domain and the user. To ensure a coherent explanation structure requires that the tutoring knowledge be applied with full recognition of the knowledge of the domain and the user. For a model of the user's knowledge to be effective, the system should be able to use it to enhance the flexibility and responsiveness of explanations generated. A user model should guide the generation of explanations so they are pitched at the correct level of the user's existing knowledge; models should be able to actively support the needs of the user so that the user's efforts in seeking out information are minimised. The aim of this research is to generate effective, flexible and responsive explanations, in educational software systems, through developing better explanation facilities than exist in currently available ITS software. In achieving this aim, I am advancing research into dialogue planning and user modelling. The explanation facilities described meet the requirements of an explanation that is tailored to the user's needs, a sound theory from which particular explanations are constructed, and a user model that can accurately represent the behaviour and beliefs of the user. My research contributions include explicitly and formally representing discourse planning / reasoning, from both the user's view and the tutor's view so that they can be clearly understood and represented in the ITS. More recent planners have adopted approaches that can be characterised as using adaptations of the classical planning approach, with informally specified planning algorithms and planning languages. Without clear, explicit and full descriptions of actions and the planning algorithm we can not be certain of the plans that such planners produce. I adopt a theoretically rigorous approach based on classical planning theory - the actions available to the planner, the planning language and algorithm should be explicitly represented to ensure that plans are complete and consistent. Classical regression planning uses dynamic planning thus enabling the system to be flexible in a variety of situations and providing the responsiveness required for an ITS. I take a theoretically rigorous approach in constructing a well specified model of discourse, building upon existing research in the area. I present a tutoring module that is able to find a way to motivate the user to take a recommended action, by relating the action to the user's goals, and that is able to reason about the text structure to generate an effective explanation - putting together several clauses of text whilst maintaining coherency. As part of developing such constructs for motivating, enabling and recommending, as well as constructs for structuring text, I use a pedagogic model based on the principled approach of (i) advising the user to take an action (ii) motivating the user to want to take the action and (iii) ensuring the user knows how to do the action. I take a clear and realistic approach to user modelling, making explicit models of the user's behaviour and beliefs. I adopt a theoretically rigorous approach, formally distinguishing between the user's reasoning and their actions, so they can be focused on separately. Formally making this distinction, more easily enables models of the user's reasoning to be tailored to the individual user. To enable the tutor to consider the full impact on the user, of the information to be delivered to the user, I use different plan spaces. I explicitly identify the different perspectives of the user and the tutor so that they can be focused on separately to generate an explanation that is tailored to the user. In my approach, reasoning about the user's skills, rules and knowledge is independent from reasoning about those of the tutor.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior research has shown that tutored problem solving with intelligent software tutors is an effective instructional method, and that worked examples are an effective complement to this kind of tutored problem solving. The work on the expertise reversal effect suggests that it is desirable to tailor the fading of worked examples to individual students’ growing expertise levels. One lab and one classroom experiment were conducted to investigate whether adaptively fading worked examples in a tutored problem-solving environment can lead to higher learning gains. Both studies compared a standard Cognitive Tutor with two example-enhanced versions, in which the fading of worked examples occurred either in a fixed manner or in a manner adaptive to individual students’ understanding of the examples. Both experiments provide evidence of improved learning results from adaptive fading over fixed fading over problem solving. We discuss how to further optimize the fading procedure matching each individual student’s changing knowledge level. KeywordsCognitive tutor-Worked examples-Adaptive fading-Expertise reversal effect
    Instructional Science 01/2010; 38(3):289-307. · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed and evaluated a multimodal affect detector that combines conversational cues, gross body language, and facial features. The multimodal affect detector uses feature-level fusion to combine the sensory channels and linear discriminant analyses to discriminate between naturally occurring experiences of boredom, engagement/flow, confusion, frustration, delight, and neutral. Training and validation data for the affect detector were collected in a study where 28 learners completed a 32-min. tutorial session with AutoTutor, an intelligent tutoring system with conversational dialogue. Classification results supported a channel × judgment type interaction, where the face was the most diagnostic channel for spontaneous affect judgments (i.e., at any time in the tutorial session), while conversational cues were superior for fixed judgments (i.e., every 20 s in the session). The analyses also indicated that the accuracy of the multichannel model (face, dialogue, and posture) was statistically higher than the best single-channel model for the fixed but not spontaneous affect expressions. However, multichannel models reduced the discrepancy (i.e., variance in the precision of the different emotions) of the discriminant models for both judgment types. The results also indicated that the combination of channels yielded superadditive effects for some affective states, but additive, redundant, and inhibitory effects for others. We explore the structure of the multimodal linear discriminant models and discuss the implications of some of our major findings. KeywordsMultimodal affect detection-Conversational cues-Gross body language-Facial features-Superadditivity-AutoTutor-Affective computing-Human-computer interaction
    User Modeling and User-Adapted Interaction 01/2010; 20:147-187. · 1.60 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014