Conference Paper

Computergestützte Patchplanung für Aortenerweiterungsplastiken.

DOI: 10.1007/978-3-540-93860-6_60 In proceeding of: Bildverarbeitung für die Medizin 2009: Algorithmen - Systeme - Anwendungen, Proceedings des Workshops vom 22. bis 25. März 2009 in Heidelberg
Source: DBLP

ABSTRACT Stenosen der Aorta betreffen 5-8% aller Neugeborenen mit Herzfehlern und führen unbehandelt meist zum Tod. Liegt die Indikation für einen chirurgischen Eingriff vor, hängt die Wahl der Operationsmethode maßgeblich von der Anatomie der Aorta sowie dem Erfahrungsschatz des Operationsteams ab. Ein Verfahren hierbei ist die Patcherweiterungsplastik, bei der ein Patch in das Gefäß eingefügt wird, um das Lumen zu erweitern. Bisher erfolgt die Patchplanung intraoperativ auf Grundlage der Erfahrung des Operateurs. Wir haben eine Applikation entwickelt, mit der bereits präoperativ ein individueller Patchvorschlag angefertigt werden kann. Dadurch wird die Operationszeit verkürzt und postoperative Komplikationen wie Re-bzw. Reststenosen und Aneurysmen reduziert. Um die Applikation zu evaluieren wurde die Stenosenquantifizierung unseres Ansatzes mit der eines Kinderkardiologen verglichen und zeigt eine Abweichung im Durchmesser von lediglich (2,33 ±1,43) mm.

0 Bookmarks
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images . The user marks certain pixels as "object" or "background" to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region in- formation. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained so- lution gives the best balance of boundary and region prop- erties among all segmentations satisfying the constraints . The topology of our segmentation is unrestricted and both "object" and "background" segments may consist of sev- eral isolated parts. Some experimental results are present ed in the context of photo/video editing and medical image seg- mentation. We also demonstrate an interesting Gestalt ex- ample. A fast implementation of our segmentation method is possible via a new max-flow algorithm in (2).
    01/2001;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divide-and-conquer approach to generate inter-slice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical data in scan-line order and calculates triangle vertices using linear interpolation. We find the gradient of the original data, normalize it, and use it as a basis for shading the models. The detail in images produced from the generated surface models is the result of maintaining the inter-slice connectivity, surface data, and gradient information present in the original 3D data. Results from computed tomography (CT), magnetic resonance (MR), and single-photon emission computed tomography (SPECT) illustrate the quality and functionality of marching cubes. We also discuss improvements that decrease processing time and add solid modeling capabilities.
    ACM SIGGRAPH Computer Graphics. 01/1987; 21:163--169.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletonization promises to become a powerful tool for compact shape description, path planning and other applications. However, current techniques can seldom efficiently process real, complicated 3D data sets, such as MRI and CT data of human organs. In this paper, we present an efficient voxel coding-based algorithm for the skeletonization of 3D voxelized objects. The skeletons are interpreted as connected center lines, consisting of sequences of medial points of consecutive clusters. These center lines are initially extracted as paths of voxels, followed by medial point replacement, refinement, smoothing and connection operations. The voxel-coding techniques have been proposed for each of these operations in a uniform and systematic fashion. In addition to preserving basic connectivity and centeredness, the algorithm is characterized by straightforward computation, no sensitivity to object boundary complexity, explicit extraction of ready-to-parameterize and branch-controlled skeletons, and efficient object hole detection. These issues are rarely discussed in traditional methods. A range of 3D medical MRI and CT data sets were used for testing the algorithm, demonstrating its utility
    IEEE Transactions on Visualization and Computer Graphics 08/1999; · 1.90 Impact Factor

Full-text (2 Sources)

View
32 Downloads
Available from
May 17, 2014