Conference Paper

Sensors Model Student Self Concept in the Classroom.

DOI: 10.1007/978-3-642-02247-0_6 Conference: User Modeling, Adaptation, and Personalization, 17th International Conference, UMAP 2009, formerly UM and AH, Trento, Italy, June 22-26, 2009. Proceedings
Source: DBLP

ABSTRACT In this paper we explore ndings from three experiments that use minimally invasive sensors with a web based geometry tutor to create a user model. Minimally invasive sensor technology is mature enough to equip classrooms of up to 25 students with four sensors at the same time while using a computer based intelligent tutoring system. The sensors, which are on each student's chair, mouse, monitor, and wrist, provide data about posture, movement, grip tension, arousal, and facially expressed mental states. This data may provide adaptive feedback to an intelligent tutoring system based on an individual student's aective states. The experiments show that when sensor data supplements a user model based on tutor logs, the model reects a larger percentage of the students' self-concept than a user model based on the tutor logs alone. The models are further expanded to classify four ranges of emotional self-concept including frustration, interest, condence, and excitement with over 78% accuracy. The emotional predictions are a rst step for intelligent tutor systems to create sensor based personalized feedback for each student in a classroom environment. Bringing sensors to our children's schools addresses real problems of students' relationship to mathematics as they are learning the subject.


Full-text (3 Sources)

Available from
Aug 12, 2014

David G. Cooper