Conference Paper

Opinion mining and summarization of reviews in web forums.

DOI: 10.1145/1754288.1754312 Conference: Proceedings of the 3rd Bangalore Annual Compute Conference, Compute 2010, Bangalore, India, January 22-23, 2010
Source: DBLP

ABSTRACT The Internet has made life of every individual (web users) very simple and sophisticated. In recent years people use the web for many reasons like personal communication, entertainment, online shopping, general search and so on. Internet forums also act as a medium of exchange for sharing resources and knowledge. Though commercial review websites allow users to express their opinions in whatever way they feel, number of reviews for specific product available is enormous. Hence it becomes difficult for the customers to read all the reviews to make a decision. In this paper we propose an extraction technique to score the reviews and summarize the opinions to end user. Based on opinions mined it is decided as whether to recommend the product to the user or not. This paper mainly focuses on providing a methodology for mining the opinions using generic user focused reviews. The experiments performed were quite promising for the data set used.

0 Bookmarks
 · 
46 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The explosion of the Web 2.0 platforms, with massive volume of user generated data, has presented many new opportunities as well as challenges for organizations in understanding consumer's behavior to support for business planning process. Feature based sentiment mining has been an emerging area in providing tools for automated opinion discovery and summarization to help business managers with achieving such goals. However, the current feature based sentiment mining systems were only able to provide some forms of sentiments summary with respect to product features, but impossible to provide insight into the decision making process of consumers. In this paper, we will present a relatively new decision support method based on Choquet Integral aggregation function, Shapley value and Interaction Index which is able to address such requirements of business managers. Using a study case of Hotel industry, we will demonstrate how this technique can be applied to effectively model the user's preference of (hotel) features. The presented method has potential to extend the practical capability of sentiment mining area, while, research findings and analysis are useful in helping business managers to define new target customers and to plan more effective marketing strategies.
    Fuzzy-IEEE; 01/2012
  • Proceedings of the International Conference on Information Systems, ICIS 2011, Shanghai, China, December 4-7, 2011; 01/2011