Fixed Points of Quantum Gravity and the Renormalisation Group

Source: arXiv

ABSTRACT We review the asymptotic safety scenario for quantum gravity and the role and implications of an underlying ultraviolet fixed point. We discuss renormalisation group techniques employed in the fixed point search, analyse the main picture at the example of the Einstein-Hilbert theory, and provide an overview of the key results in four and higher dimensions. We also compare findings with recent lattice simulations and evaluate phenomenological implications for collider experiments. Comment: 18 pages, 4 figures. Plenary talk. To appear in the proceedings of "From Quantum to Emergent Gravity: Theory and Phenomenology", June 11-15 2007, Trieste, Italy

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the context of dynamical breaking of local supersymmetry (supergravity), including the Deser-Zumino super-Higgs effect, for the simple but quite representative cases of N=1, D=4 supergravity, we discuss the emergence of Starobinsky-type inflation, due to quantum corrections in the effective action arising from integrating out gravitino fields in their massive phase. This type of inflation may occur after a first-stage small-field inflation that characterises models near the origin of the one-loop effective potential, and it may occur at the non-trivial minima of the latter. Phenomenologically realistic scenarios, compatible with the Planck data, may be expected for the conformal supergravity variants of the basic model.
    12/2013; 89(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the standard model (SM) in its full perturbative validity range between ΛQCD and the U(1)Y Landau pole, assuming that a yet unknown gravitational theory in the UV does not introduce additional particle thresholds, as suggested by the tiny cosmological constant and the absence of new stabilizing physics at the electroweak scale. We find that, due to dimensional transmutation, the SM Higgs potential has a global minimum at 1026 GeV, invalidating the SM as a phenomenologically acceptable model in this energy range. We show that extending the classically scale invariant SM with one complex singlet scalar S allows us to (i) stabilize the SM Higgs potential, (ii) induce a scale in the singlet sector via dimensional transmutation that generates the negative SM Higgs mass term via the Higgs portal, (iii) provide a stable CP-odd singlet as the thermal relic dark matter due to CP-conservation of the scalar potential, and (iv) provide a degree of freedom that can act as an inflaton in the form of the CP-even singlet. The logarithmic behavior of dimensional transmutation allows one to accommodate the large hierarchy between the electroweak scale and the Landau pole, while understanding the latter requires a new nonperturbative view on the SM.
    12/2013; 89(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the compatibility of minimally coupled scalar, fermion and gauge fields with asymptotically safe quantum gravity, using nonperturbative functional Renormalization Group methods. We study d=4,5 and 6 dimensions and within certain approximations find that for a given number of gauge fields there is a maximal number of scalar and fermion degrees of freedom compatible with an interacting fixed point at positive Newton coupling. The bounds impose severe constraints on grand unification with fundamental Higgs scalars. Supersymmetry and universal extra dimensions are also generally disfavored. The standard model and its extensions accommodating right-handed neutrinos, the axion and dark-matter models with a single scalar are compatible with a fixed point.
    11/2013; 89(8).

Full-text (2 Sources)

Available from
Sep 16, 2014