Conference Paper

Multilevel statistical process control of asynchronous multi-stream processes in semiconductor manufacturing.

Univ. of Pavia, Pavia, Italy
DOI: 10.1109/COASE.2010.5584508 Conference: IEEE Conference on Automation Science and Engineering, CASE 2010, Toronto, ON, Canada, 21-24 August, 2010
Source: DBLP

ABSTRACT In semiconductor manufacturing, the purpose of chamber matching is the alignment of process and yield results of distinct chambers performing in parallel the same process step on different silicon wafers. In this paper, multi-level linear models and statistical process control techniques are jointly employed to define control charts for monitoring chamber matching accuracy and preemptively report chamber misalignments. Specifically, multilevel versions of the classic T2 Control Chart, MEWMA Control Chart and Self-Starting Control Chart are defined and tested against experimental and simulated data.

1 Follower
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present paper is motivated by the application of Predictive Maintenance (PM) techniques in the semiconductor manufacturing environment: such techniques are able, using process data, to make reliable predictions of residual equipment lifetime. The employment of PM yields positive fallouts on the productive process in form of unscheduled downtime reduction, increased spare parts availability and improved overall production quality. One of the main challenges in PM modeling regards the data-driven assessment of relevant process variables when insufficient expert knowledge is available. In this paper, survival models theory is employed jointly with ℓ1 penalization techniques: this allows to obtain sparse models able to select the meaningful process variables and simultaneously predict the remaining lifetime of an equipment. Additionally, frailty modeling techniques are employed to concurrently handle several productive equipments of the same type, exploiting their similarities to increase prediction accuracy. The proposed methodology is validated, illustrating promising results, by means of a semiconductor manufacturing dataset.
    IEEE Conference on Automation Science and Engineering, CASE 2011, Trieste, Italy, Aug. 24-27, 2011; 01/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: In semiconductor manufacturing, the state of the art for wafer quality control is based on product monitoring and feedback control loops; the related metrology operations, that usually involve scanning electron microscopes, are particularly cost-intensive and time-consuming. It is therefore not possible to evaluate every wafer: commonly, a small subset of a productive lot is measured at the metrology station and delegated to represent the whole lot. Virtual Metrology (VM) methodologies aim to obtain reliable estimates of metrology results with- out actually performing measurement operations; this goal is usually achieved by means of statistical models, linking process data and context information to target measurements. In this paper, we tackle two of the most important issues in VM: (i) regression in high dimensional spaces where few variables are meaningful, and (ii) data heterogeneity caused by inhomogeneous production and equipment logistics. We propose a hierarchical framework based on '1-penalized ma- chine learning techniques and solved by means of multitask learning strategies. The proposed methodology is validated on actual process and measurement data from the semiconductor manufacturing industry.
    IEEE Conference on Automation Science and Engineering, CASE 2011, Trieste, Italy, Aug. 24-27, 2011; 01/2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ion Implantation is one of the most sensitive processes in Semiconductor Manufacturing. It consists in impacting accelerated ions with a material substrate and is performed by an Implanter tool. The major maintenance issue of such tool concerns the breaking of the tungsten filament contained within the ion source of the tool. This kind of fault can happen on a weekly basis, and the associated maintenance operations can last up to 3 hours. It is important to optimize the maintenance activities by synchronizing the Filament change operations with other minor maintenance interventions. In this paper, a Predictive Maintenance (PdM) system is proposed to tackle such issue; the filament lifetime is estimated on a statistical basis exploiting the knowledge of physical variables acting on the process. Given the high-dimensionality of the data, the statistical modeling has been based on Regularization Methods: Lasso, Ridge Regression and Elastic Nets. The predictive performances of the aforementioned regularization methods and of the proposed PdM module have been tested on actual productive semiconductor data.
    01/2012; DOI:10.1109/ASMC.2012.6212884