Conference Paper

Chi-square unbiased risk estimate for denoising magnitude MR images.

DOI: 10.1109/ICIP.2011.6115745 Conference: 18th IEEE International Conference on Image Processing, ICIP 2011, Brussels, Belgium, September 11-14, 2011
Source: DBLP

ABSTRACT In this article we develop Stein-type results for unbiased estimation of the risk associated with parametric estimators of the noncentrality parameter of chi-squared random variables on two degrees of freedom. These results allow for estimator adaptivity, and thus can be used to optimize the parameters of a broad class of typical denoising functions, subject only to weak smoothness assumptions. We show how to apply these results to the problem of enhancing magnitude magnetic resonance images, which are known to be corrupted by Rician noise. As an example, we propose a transform-domain point-wise estimator based on linear expansion of thresholds. Finally, we apply this estimator to synthetic and real image data in conjunction with the undecimated Haar wavelet transform, and conclude that it is able to outperform previous wavelet-based techniques and compares favorably with a more recent approach based on non-local means.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this article we derive an unbiased expression for the expected mean-squared error associated with continuously differentiable estimators of the noncentrality parameter of a chi-square random variable. We then consider the task of denoising squared-magnitude magnetic resonance image data, which are well modeled as independent noncentral chi-square random variables on two degrees of freedom. We consider two broad classes of linearly parameterized shrinkage estimators that can be optimized using our risk estimate, one in the general context of undecimated filterbank transforms, and another in the specific case of the unnormalized Haar wavelet transform. The resultant algorithms are computationally tractable and improve upon state-of-the-art methods for both simulated and actual magnetic resonance image data.
    IEEE Transactions on Image Processing 06/2011; · 3.20 Impact Factor


Available from