Conference Paper

Simultaneous correspondence and non-rigid 3D reconstruction of the coronary tree from single X-ray images.

DOI: 10.1109/ICCV.2011.6126325 Conference: IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011
Source: DBLP

ABSTRACT We present a novel approach to simultaneously reconstruct the D structure of a non-rigid coronary tree and estimate point correspondences between an input X-ray image and a reference 3D shape. At the core of our approach lies an optimization scheme that iteratively fits a generative D model of increasing complexity and guides the matching process. As a result, and in contrast to existing approaches that assume rigidity or quasi-rigidity of the structure, our method is able to retrieve large non-linear deformations even when the input data is corrupted by the presence of noise and partial occlusions. We extensively evaluate our approach under synthetic and real data and demonstrate a remarkable improvement compared to state-of-the-art.

0 Followers
 · 
102 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: 2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration.
    IEEE Transactions on Medical Imaging 05/2014; 33(5):1023-1034. DOI:10.1109/TMI.2014.2300117 · 3.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a new approach for matching sets of branching curvilinear structures that form graphs embedded in ${mathbb {R}}^2$ or ${mathbb {R}}^3$ and may be subject to deformations. Unlike earlier methods, ours does not rely on local appearance similarity nor does require a good initial alignment. Furthermore, it can cope with non-linear deformations, topological differences, and partial graphs. To handle arbitrary non-linear deformations, we use Gaussian process regressions to represent the geometrical mapping relating the two graphs. In the absence of appearance information, we iteratively establish correspondences between points, update the mapping accordingly, and use it to estimate where to find the most likely correspondences that will be used in the next step. To make the computation tractable for large graphs, the set of new potential matches considered at each iteration is not selected at random as with many RANSAC-based algorithms. Instead, we introduce a so-called Active Testing Search strategy that performs a priority search to favor the most likely matches and speed-up the process. We demonstrate the effectiveness of our approach first on synthetic cases and then on angiography data, retinal fundus images, and microscopy image stacks acquired at very different resolutions.
    IEEE Transactions on Pattern Analysis and Machine Intelligence 03/2015; 37(3):625-638. DOI:10.1109/TPAMI.2014.2343235 · 5.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurate alignment of intra-operative X-ray coronary angiography (XA) and pre-operative cardiac CT angiography (CTA) may improve procedural success rates of minimally invasive coronary interventions for patients with chronic total occlusions. It was previously shown that incorporating patient specific coronary motion extracted from 4D CTA increases the robustness of the alignment. However, pre-operative CTA is often acquired with gating at end-diastole, in which case patient specific motion is not available. For such cases, we investigate the possibility of using population based coronary motion models to provide constraints for the 2D+t/3D registration. We propose a methodology for building statistical motion models of the coronary arteries from a training population of 4D CTA datasets. We compare the 2D+t/3D registration performance of the proposed statistical models with other motion estimates, including the patient specific motion extracted from 4D CTA, the mean motion of a population, the predicted motion based on the cardiac shape. The coronary motion models, constructed on a training set of 150 patients, had a generalization accuracy of 1mm root mean square point-to-point distance. Their 2D+t/3D registration accuracy on one cardiac cycle of 12 monoplane XA sequences was similar to, if not better than, the 4D CTA based motion, irrespective of which respiratory model and which feature based 2D/3D distance metric was used. The resulting model based coronary motion estimate showed good applicability for registration of a subsequent cardiac cycle.
    Medical image analysis 03/2013; 17(6). DOI:10.1016/j.media.2013.03.003 · 3.68 Impact Factor

Full-text (2 Sources)

Download
46 Downloads
Available from
Jun 5, 2014