Conference Paper

On the trajectory formation of the human arm constrained by the external environment.

Sensorimotor Coordination Group, Max Planck Inst. for Psychol. Res., Munich, Germany
DOI: 10.1109/ROBOT.2003.1242030 In proceeding of: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, ICRA 2003, September 14-19, 2003, Taipei, Taiwan
Source: DBLP

ABSTRACT Opening a door, turning a steering wheel, rotating a coffee mill are typical examples of human movements constrained by the external environment. The constraints decrease the mobility of the human arm and leads to the redundancy in the distribution of the interaction force between the arm joints. Due to the redundancy of the force actuation in the constrained motions, there is infinite number of ways to form the trajectory of the arm. However, human forms the hand trajectory in a unique way. How does human resolve the redundancy of the constrained motions and specify the hand trajectory? To investigate these problems, we examine the trajectory of human arm in a crank rotation task. To explain the trajectory formation in constrained point-to-point motions, we formulate an optimal control problem and propose a novel criterion minimizing the hand contact force change and muscle force change over the time of movement. The simulation results are compared with human motion and force profiles obtained experimentally. It is shown that the novel criterion captures the characteristics of the human constrained motion much more satisfactory than conventional criteria accepted in the research community.

0 Bookmarks
 · 
32 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A first step towards truly versatile robot assistants consists of building up experience with simple tasks such as the cooperative manipulation of objects. This paper extends the state-of-the-art by developing an assistant which actively cooperates during the point-to-point transportation of an object. Besides using admittance control to react to interaction forces generated by its operator, the robot estimates the intended human motion and uses this identified motion to move along with the operator. The offered level of assistance can be scaled, which is vital to give the operator the opportunity to gradually learn how to interact with the system. Experiments revealed that, while the robot is programmed to adapt to the human motion, the operator also adapts to the offered assistance. When using the robot assistant the required forces to move the load are greatly reduced and the operators report that the assistance feels comfortable and natural.
    2007 IEEE International Conference on Robotics and Automation, ICRA 2007, 10-14 April 2007, Roma, Italy; 01/2007
  • [Show abstract] [Hide abstract]
    ABSTRACT: There are many tasks that requires us to interact with physical environment, such as opening a door, turning a steering wheel, rotating a coffee mill, et al.. In these tasks, the arm is usually constrained to the environmental geometry. Although there are infinite possibilities for human subject to select his/her arm trajectories as well as interacting forces when performing the tasks, experiments of human constrained motion however show that there clearly exist some characteristics inherent in all measurement data. Specifically, in this research, it is shown that, when human rotating a crank, he/she optimizes the criterion that minimizes the change of both the end-effector force as well as the muscle forces. This numerical result is strongly supported by human experiments data. Since this criterion is different from the minimum torque change criterion proposed to evaluate human reaching movement in free motion space, it is then suggested that human may use different optimal strategies with respect to different task requirements as well as environmental conditions
    Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference on; 09/2004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Opening a door, turning a steering wheel, rotating a coffee mill are typical examples of human movements that require physical interaction with external environment. In these tasks, the human arm is kinematically constrained by the external environment. Although there are infinite possibilities for human subject to select his/her arm trajectories as well as interacting forces, experimental data of human constrained motion show that there exists some regulation inherent in all the measurement data. It is suggested in this paper that in the constrained movements human optimizes the criterion that minimizes the change of the hand contact forces as well as the muscle forces. This criterion differs from the minimum torque change criterion, predicting unconstrained reaching movements. Our experiments show close matching between the prediction and the subjects' data. Therefore, human may use different optimization strategies when performing constrained movements.
    Proceedings of the XVII IMEKO World Congress, IMEKO, 2059-2064 (2003). 01/2003;