Conference Paper

OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation.

Inst. of Robot. & Intell. Syst., ETH Zurich, Zurich, Switzerland
DOI: 10.1109/ROBOT.2010.5509857 Conference: IEEE International Conference on Robotics and Automation, ICRA 2010, Anchorage, Alaska, USA, 3-7 May 2010
Source: DBLP

ABSTRACT We demonstrate five-degree-of-freedom (5-DOF) wireless magnetic control of a fully untethered microrobot with a magnetic steering system we call OctoMag. Although only occupying a single hemisphere, this system is capable of isotropically applying forces on the order of 1-40 μN with unrestricted control of the 2 orienting DOF. These capabilities are enabled through the use of soft-magnetic-cores which provide an increase of approximately 20× that of air cores in magnetic-field strength, but comes at the cost of more complicated interactions between coils. We propose a modeling mechanism that assumes the field contributions of the individual currents superimpose linearly when using cores with large linear regions and negligible hysteresis. When designing the system, the locations and quantity of electromagnets were optimized with regards to the force generation in the worst-case direction predicted by the model. The resultant system is capable of both open and closed-loop operation over a workspace of 4 cm3. OctoMag was primarily designed for the control of intraocular microrobots for delicate retinal procedures, but also has potential uses in other medical applications or micromanipulation under an optical microscope.

1 Bookmark
 · 
225 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, the locomotion of a microrobot wirelessly actuated by electromagnetic actuation systems has been studied in many ways. Because of the inherent characteristics of an electromagnetic field, however, the magnetic field of each coil in the electromagnetic actuation system induces magnetic field interferences, which can distort the desired electromagnetic field, preventing the microrobot from following the desired path. In this article, we used two pairs of Helmholtz coils and two pairs of Maxwell coils in a two-dimensional electromagnetic actuation system. Generally, the two pairs of Helmholtz coils generate the torque for the rotation of the microrobot and the two pairs of Maxwell coils generate the propulsion force of the microrobot. Both pairs of Helmholtz and Maxwell coils have to work to simultaneously align and propel the microrobot in a desired direction. In this situation, however, the electromagnetic fields produced by the Helmholtz coils can interfere with those produced by the Maxwell coils. This interference is closely dependent on the position of the microrobot in the region of interest inside the electromagnetic coils system. This means that the alignment direction and propulsion force of the microrobot can be distorted according to the position of the microrobot. Therefore, we propose a compensation algorithm for the electromagnetic field interference using the position information of the microrobot to correct the magnetic field interferences. First, the interference of an electromagnetic field obeying the Biot–Savart law is analyzed by numerical analysis. Second, a position-based compensation algorithm for the locomotion of a microrobot is proposed. Various locomotion tests of a microrobot verified that the proposed compensation algorithm could reduce the normalized average tracking error from 5.25% to 1.92%.
    ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210) 10/2013; 227:1915~1926. · 0.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microactuators are an important tool for precise manipulation of components and materials in nanotechnologies. The problems of design and application of microactuators for micro- and nanopositioning, microassembly, and microrobotics are considered in this paper. The basic parameters and models of piezoelectric, magnetostriction, electromagnetic, electrostatic, electrothermal, and hybrid microactuators are described. A general information approach that implies the description of physical models used in order to analyze microactuator behavior and optimize their design is considered.
    Automatic Documentation and Mathematical Linguistics 12/2011; 45(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The field of microrobotics dedicated to medical interventions although relatively new, is progressing at a very fast pace. Among the various accesses inside the body being investigated, the vascular network with close to 100,000 km of potential routes in each human and offering a large range of interventional opportunities has been of special interest in recent years. Although significant progresses and milestones have been achieved in this particular field of research, some important challenges remain to be solved before microrobotics in the human vasculature becomes a reality. Nonetheless, despite these challenges, some applications are already on the horizon. This paper aims at providing a quick overview of the present status of the field of microrobotics for interventions in the vascular network and to describe the main critical challenges that must be met in the short term to enable new or enhanced medical interventional procedures that may bring potential great outcomes for the patients.
    Journal of Micro-Bio Robotics. 02/2013; 8(1).

Full-text (2 Sources)

Download
52 Downloads
Available from
May 20, 2014