Conference Proceeding

Consensus-based distributed intrusion detection for multi-robot systems.

Interdepartmental Res. Center "E. Piaggio", Univ. di Pisa, Pisa;
Proceedings - IEEE International Conference on Robotics and Automation 01/2008; DOI:10.1109/ROBOT.2008.4543196 In proceeding of: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, May 19-23, 2008, Pasadena, California, USA
Source: DBLP

ABSTRACT This paper addresses a security problem in robotic multi-agent systems, where agents are supposed to cooperate according to a shared protocol. A distributed Intrusion Detection System (IDS) is proposed here, that detects possible non-cooperative agents. Previous work by the authors showed how single monitors embedded on-board the agents can detect non- cooperative behavior, using only locally available information. In this paper, we allow such monitors to share the collected information in order to overcome their sensing limitation. In this perspective, we show how an agreement on the type of behavior of a target-robot may be reached by the monitors, through execution of a suitable consensus algorithm. After formulating a consensus problem over non-scalar quantities, and with a generic update function, we provide conditions for the consensus convergence and an upper bound to its transient duration. Effectiveness of the proposed solution is finally shown through simulation of a case study.

0 0
 · 
0 Bookmarks
 · 
119 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This paper addresses the problem of detecting possible intruders in a group of autonomous robots, which coexist in a shared environment and interact with each other according to a set of "social behaviors", or common rules. Such rules specify what actions each robot is allowed to perform in the pursuit of its individual goals: rules are distributed, i.e. they can evaluated based only on the state of the individual robot, and on information that can be sensed directly or through communication with immediate neighbors. We consider intruders as robots which misbehave, i.e. do not follow the rules, because of either spontaneous failures or malicious reprogramming. Our goal is to detect intruders by observing the congruence of their behavior with the social rules as applied to the current state of the overall system. Moreover, in accordance with the fully distributed nature of the problem, the detection itself must be peformed by individual robots, based only on local information. The paper introduces a formalism that allows to model uniformly a large variety of possible robot societies. The main contribution consists in the proposal of an Intrusion Detection System, i.e. a protocol that, under suitabkle conditions, allows individual robots to detect possible misbehaving robots in their vicinity, and trigger possible further actions to secure the society. It is worth noting that the generality of the protocol formalism makes so that local monitors can be automatically generated once the cooperation rules and the robot dynamics are specified. The effectiveness of the proposed technique is shown through application to examples of automated robotic systems.
    Computing Research Repository - CORR. 01/2011;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This paper focuses on the convergence of infor- mation in distributed systems of agents communicating over a network. The information on which the convergence is sought is not represented by real numbers, rather by sets of real numbers, whose possible dynamics are given by the class of so-called Boolean maps, involving only unions, intersections, and complements of sets. Based on a notion of contractivity, a necessary and sufficient condition ensuring the global and local convergence toward an equilibrium point is presented. In particular the analysis of global convergence recovers results already obtained by the authors, but the more general approach used in this paper allows analogue results to be found to characterize the local convergence.
    Computing Research Repository - CORR. 01/2011;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In this paper a novel decentralized approach for task sequencing within a multiple missions control framework is presented. The main contribution of this work concerns the decentralization of a control framework for multiple mission execution in order to enhance the robustness of the system, and the application of the latter to a heterogeneous robotic network. The proposed approach is based on the Matrix based Discrete Event Framework (MDEF). This formalism is adapted to networks of heterogeneous robots, i.e., robots with different capabilities, and to the decentralized control of mission execution using a consensus-based approach which guarantees the agreement among robots on executed actions and their consequences.
    Robotics and Automation (ICRA), 2011 IEEE International Conference on; 06/2011

Full-text (2 Sources)

View
95 Downloads
Available from
Dec 1, 2012