Conference Paper

Mechanical Design of Joint Braking and Underactuated Mechanism of "Tri-Star3"; Horizontal Polyarticular Arm Equipped 3-Wheeled Expandable Mobile Robot.

Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology, Edo, Tōkyō, Japan
DOI: 10.1109/IROS.2006.281953 Conference: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006, October 9-15, 2006, Beijing, China
Source: DBLP

ABSTRACT In this paper, a horizontal polyarticular expandable 3-wheeled planetary rover "Tri-Star3" is proposed. This expandable rover conjugates compact folded size with high stability on rough terrain. The design of braking mechanism in each arm's joint is explained in detail. Through experiments, we confirmed the effectiveness of: (i) the underactuated braking mechanism with optimal shape cam and (ii) the underactuated motion of the arm-wheel module. By using this the proposed system achieves omnidirectional mobility with light weight

0 Followers
 · 
24 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a tracked robot composed of the proposed crawler mechanism, in which a planetary gear reducer is employed as the transmission device and provides two outputs in different forms with only one actuator. When the crawler moves in a rough environment, collision between mechanism and environment inevitably occurs. This under-actuated crawler can absorb the impact energy that should be transmitted to the actuator. A modular concept for the crawler is proposed for enlarging its use in robot systems and mechanical design of a modular crawler is conducted. Using this crawler module, a four-crawler-driven robot is realized by easily assembling. Experiments are conducted to verify the proposed concept and mechanical design. A single crawler module can well perform the proposed three locomotion modes. The four-crawler-driven robot has good adaptability to the environment which can get over obstacles both passively and actively.
    Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on; 11/2009
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper deals with a tracked robot that consists of the proposed crawler module, in which a planetary gear reducer is used as the power transmission device to give two different outputs with just one actuator. This under-actuated system could perform posture control through the interaction between the front and rear modules. On occasion, the posture that the front module is lifted up can make the robot overcome obstacles actively and easily. To find out the controllable postures, the static analysis of the robot has been conducted. In this paper, we provide the control strategy for performing the posture control, and propose the control methods including direct, indirect, and cooperative control to conduct the posture control. Experimental tests show the effectiveness of the control methods.
    2009 IEEE International Conference on Robotics and Automation, ICRA 2009, Kobe, Japan, May 12-17, 2009; 01/2009
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work presents the kinematic modeling and motion planning algorithm for an omni-directional mobile robot with kinematic redundancy. This robot consists of three wheel mechanisms each of which has one redundant joint as compared to the operational degrees. Initially, the kinematic modeling of this robot is conducted. Next, using such a kinematic redundancy of each chain, several motion planning algorithms are suggested. A localization algorithm of the mobile robot based on odometry is presented and specifically, two-leveled obstacle avoidance scheme, which simultaneously considers both large and small obstacles, is presented. The usefulness of the proposed algorithms is verified through simulation.
    2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan; 01/2010