Conference Paper

A Parallel Compliant Meso-Manipulator for Finger Rehabilitation Treatments: Kinematic and Dynamic Analysis.

DOI: 10.1109/IROS.2008.4651029 Conference: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 22-26, 2008, Acropolis Convention Center, Nice, France
Source: DBLP

ABSTRACT A parallel and flexible meso-manipulator for finger rehabilitation treatments is presented in this paper. The work deals with the study of a meso-robotpsilas kinematic and dynamic peculiar behavior, aimed at allowing its application to muscular activity and tendon tension, in those patients with even a partial lack of the fingers functionality, for instance due to a stroke. As a result of its structural compliance, the meso-manipulator results particularly suitable for a rehabilitative application: after having coupled the manipulator to a common cloth-glove joined to the mobile platform of the robot, the patientpsilas finger can be driven to the required movement. As external loads can also be imposed to the involved tendons, the realized motion parts performed by the robot and by the patient can be quantified. In this way, the surgeon can constantly monitor the therapy trend, but also the patient has an objective quantification of his/her improvement.

0 Followers
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The investigated cantilever beam is characterized by a constant rectangular cross-section and is subjected to a concentrated constant vertical load, to a concentrated constant horizontal load and to a concentrated constant bending torque at the free end. The same beam is made by an elastic non-linear asymmetric Ludwick type material with different behavior in tension and compression. Namely the constitutive law of the proposed material is characterized by two different elastic moduli and two different strain exponential coefficients. The aim of this study is to describe the deformation of the beam neutral surface and particularly the horizontal and vertical displacements of the free end cross-section. The analysis of large deflection is based on the Euler–Bernoulli bending beam theory, for which cross-sections, after the deformation, remain plain and perpendicular to the neutral surface; furthermore their shape and area do not change. On the stress viewpoint, the shear stress effect and the axial force effect are considered negligible in comparison with the bending effect. The mechanical model deduced from the identified hypotheses includes two kind of non-linearity: the first due to the material and the latter due to large deformations. The mathematical problem associated with the mechanical model, i.e. to compute the bending deformations, consists in solving a non-linear algebraic system and a non-liner second order ordinary differential equation. Thus a numerical algorithm is developed and some examples of specific results are shown in this paper.
    Meccanica 06/2014; 49(6). DOI:10.1007/s11012-014-9895-z · 1.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A prototype of an automatic micropositioning system was developed. This prototype uses a shape memory alloy (SMA) actuator, a dedicated PI controller and a piece of software to command a desired motion profile for the actuator. The proposed micropositioning system is characterized by a 4 mm stroke, a 1 μm resolution and a 70 g nominal force and can be commanded directly from a personal computer and without human retroaction. The closed loop positioning resolution (1 μm) is obtained in spite of inaccurate system behaviour during its movement.
    International Journal of Advanced Robotic Systems 01/2013; 10(149):1-10. DOI:10.5772/55539 · 0.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The shape memory effect is associated to the recovering of a previous memorized shape due to an external action, generally a thermic triggering. In this work, we show the state of the art of shape memory materials and their applications especially as actuators and integrated in more complex machines.
    08/2013; 389:255-259. DOI:10.4028/www.scientific.net/AMM.389.255