Conference Paper

A Multiagent Model for Intelligent Distributed Control Systems.

DOI: 10.1007/11552413_28 Conference: Knowledge-Based Intelligent Information and Engineering Systems, 9th International Conference, KES 2005, Melbourne, Australia, September 14-16, 2005, Proceedings, Part I
Source: DBLP

ABSTRACT One approach for automating industrial processes is a Distributed Control System (DCS) based on a hierarchical architecture.
In this hierarchy, each level is characterized by a group of different tasks to be carried out within the control system and
by using and generating different information. In this article, a reference model for the development of Intelligent Distributed
Control Systems based on Agents (IDCSA) inspired by this hierarchical architecture is presented. The agents of this model
are classified in two categories: control agents and service management environment agents. To define these agents we have
used an extension of the MAS-Common KADS methodology for Multi-Agent Systems (MAS).

0 Bookmarks
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper aims to evaluate the learning model for coordination schemes in multiagent systems (MAS) based on Cultural Algorithms. The model is applied to a case of study in industrial automation, related to the Agents-based System for Fault Management System. The instantiation occurs on the conversations that are defining in the MAS's coordination model, which are characterized by type of conversation that have been previously defined. A conversation can have sub-conversations, and in this case the sub-conversations are characterized by a particular type of conversation. Additionally in these conversations can occur some type of conflict, that can be solved by using different coordination mechanisms existing in the literature. For this, it is developed a model based on cultural algorithms, which is used by the MAS as a learning way in the process to determine which coordination mechanism is more suitable for a given conversation and a given scenario. The results show that the obtained model through this learning guides the MAS to determine which mechanism is better suited for a given conversation. I. INTRODUCCIÓN Un sistema multiagente (SMA) está formado por un grupo (comunidad) de agentes que interactúan entre sí utilizando protocolos y lenguajes de comunicación de alto nivel, para resolver problemas que están más allá de las capacidades o del conocimiento de cada uno [1]. Estas interacciones entre agentes pueden ser vistas como conversaciones, que a su vez pueden tener sub-conversaciones. Para caracterizar estas sub-conversaciones se utilizan tipos de conversación (TCs), los cuales han sido definidos previamente [2], éstos permiten generalizar las interacciones o conversaciones entre agentes de cualquier comunidad. Ahora bien, estas sociedades de agentes pueden enfrentar conflictos a la hora no sólo de comunicarse, sino también a la hora de administrar recursos entre los individuos o a la hora de asignar tareas, etc. Para manejar dichos conflictos, existen los esquemas de coordinación (mecanismos de coordinación, MC) que permiten la resolución de los mismos. En este trabajo se propone un modelo de aprendizaje y optimización de esquemas de coordinación para SMA basado en Algoritmos Culturales (AC). Estos algoritmos permiten compartir experiencias entre los individuos, ya que uno de los componentes principales de estos algoritmos es un espacio común de experiencias, proveyendo así la capacidad de un aprendizaje colectivo basado en el intercambio de conocimientos. Dentro del marco de la coordinación en SMA existe una gran cantidad de trabajos orientados a su estudio, e. g., en el trabajo de [3] se enfocan en diseñar agentes que logren una óptima, eficiente y flexible coordinación. Para lograr esto basan su modelo en la teoría de juegos y derivan una solución llamada Harsanyi-Bellman Ad hoc coordination (HBA), la cual utiliza el equilibrio de Nash Bayesiano para planear procedimientos que lleven a encontrar acciones óptimas en el sentido del control óptimo de Bellman (programación dinámica). En [4] estudian la coordinación distribuida en sistemas multiagente modelando dinámicas no-lineales que caracterizan las interacciones entre los agentes con grafos no dirigidos. En [5] desarrollan mecanismos de coordinación para la implementación del control autónomo en procesos logísticos, con tecnología multiagente. El paradigma de logísticas autónomas reduce la complejidad computacional, y se enfrenta a la dinámica local, delegando procesos de control a los objetos participantes. Finalmente, el trabajo de [6] aplica algoritmos culturales a una comunidad de agentes, para estudiar la población prehispánica de de la región Central de Mesa Verde en EEUU. En ese trabajo utilizan los AC cómo método de aprendizaje para que los agentes puedan reconocer a aquellos individuos que estén más dispuestos a colaborar en proveer recursos (alimentos).
    Conferencia Latinoamericana en Informática CLEI 2013, Club Puerto Azul, Naiguatá, Vargas, Venezuela; 10/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is usually agreed that a system capable of learning deserves to be called intelligent; and conversely, a system being considered as intelligent is, among other things, usually expected to be able to learn. Learning always has to do with the self-improvement of future behavior based on past experience. In this paper we present a learning model for Multi-Agent System, which aims to the optimization of coordination schemes through a collective learning process based on Cultural Algorithms.
    2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China; 07/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: We study in this work the problem of adaptation on cognitive maps (CMs). We review different approaches of adaptation for CM, based on the idea that the causal relationships of the CM change during their phase of execution (runtime). Particularly, we study three dynamic causal relationships: the first one where the relationships between the concepts are defined as fuzzy rules, and the concepts and the relationship are fuzzy variables; the second one where mathematical models that describe the real system are used to define the causal relationships; and finally, in the last one the causal relationships are defined by generic logic rules based on the state of the concepts of the map. Each one can be used to model different types of systems, because each one exploits specific characteristics of the modeled system. These approaches are tested in different problems, giving very good results, and demonstrating that the utilization of CM as dynamic models is reliable and good.
    Applied Soft Computing 01/2013; 13(1):271–282. · 2.68 Impact Factor

Full-text (2 Sources)

Download
241 Downloads
Available from
Jun 3, 2014