Conference Paper

Frustratingly Hard Domain Adaptation for Dependency Parsing.

Conference: EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic
Source: DBLP
0 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vast majority of parser evaluation is conducted on the 1984 Wall Street Journal (WSJ). In-domain evaluation of this kind is important for system development, but gives little indication about how the parser will perform on many practical problems. Wikipedia is an interesting domain for parsing that has so far been under-explored. We present statistical parsing results that for the first time provide information about what sort of performance a user parsing Wikipedia text can expect. We find that the C&C parser's standard model is 4.3% less accurate on Wikipedia text, but that a simple self-training exercise reduces the gap to 3.8%. The self-training also speeds up the parser on newswire text by 20%.
    01/2009;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a series of new theoretical, algorithmic, and empirical results for domain adaptation and sample bias correction in regression. We prove that the discrepancy is a distance for the squared loss when the hypothesis set is the reproducing kernel Hilbert space induced by a universal kernel such as the Gaussian kernel. We give new pointwise loss guarantees based on the discrepancy of the empirical source and target distributions for the general class of kernel-based regularization algorithms. These bounds have a simpler form than previous results and hold for a broader class of convex loss functions not necessarily differentiable, including LqLq losses and the hinge loss. We also give finer bounds based on the discrepancy and a weighted feature discrepancy parameter. We extend the discrepancy minimization adaptation algorithm to the more significant case where kernels are used and show that the problem can be cast as an SDP similar to the one in the feature space. We also show that techniques from smooth optimization can be used to derive an efficient algorithm for solving such SDPs even for very high-dimensional feature spaces and large samples. We have implemented this algorithm and report the results of experiments both with artificial and real-world data sets demonstrating its benefits both for general scenario of adaptation and the more specific scenario of sample bias correction. Our results show that it can scale to large data sets of tens of thousands or more points and demonstrate its performance improvement benefits.
    Theoretical Computer Science 01/2014; 519:103–126. · 0.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Automatic classification of sentiment is important for numerous applications such as opinion mining, opinion summarization, contextual advertising, and market analysis. Typically, sentiment classification has been modeled as the problem of training a binary classifier using reviews annotated for positive or negative sentiment. However, sentiment is expressed differently in different domains, and annotating corpora for every possible domain of interest is costly. Applying a sentiment classifier trained using labeled data for a particular domain to classify sentiment of user reviews on a different domain often results in poor performance because words that occur in the train (source) domain might not appear in the test (target) domain. We propose a method to overcome this problem in cross-domain sentiment classification. First, we create a sentiment sensitive distributional thesaurus using labeled data for the source domains and unlabeled data for both source and target domains. Sentiment sensitivity is achieved in the thesaurus by incorporating document level sentiment labels in the context vectors used as the basis for measuring the distributional similarity between words. Next, we use the created thesaurus to expand feature vectors during train and test times in a binary classifier. The proposed method significantly outperforms numerous baselines and returns results that are comparable with previously proposed cross-domain sentiment classification methods on a benchmark data set containing Amazon user reviews for different types of products. We conduct an extensive empirical analysis of the proposed method on single- and multisource domain adaptation, unsupervised and supervised domain adaptation, and numerous similarity measures for creating the sentiment sensitive thesaurus. Moreover, our comparisons against the SentiWordNet, a lexical resource for word polarity, show that the created sentiment-sensitive thesaurus accurately captures words that express similar s- ntiments.
    IEEE Transactions on Knowledge and Data Engineering 01/2012; 25(8). · 1.82 Impact Factor

Full-text (2 Sources)

Download
27 Downloads
Available from
Jun 3, 2014