Conference Paper

Handling Evolutions in Multidimensional Structures.

DOI: 10.1109/ICDE.2003.1260823 Conference: IEEE 19th International Conference on Data Engineering (ICDE), At Bangalore, India
Source: DBLP

ABSTRACT Building multidimensional systems requires gathering data from heterogeneous sources throughout time. Then, data is integrated in multidimensional structures organized around several axes of analysis, or dimensions. But these analysis structures are likely to vary over time and the existing multidimensional models do not (or only partially) take these evolutions into account. Hence, a dilemma appears for the designer of data warehouses: either keeping trace of evolutions therefore limiting the capability of comparison for analysts, or mapping all data in a given version of the structure that entails alteration (or even loss) of data. We propose a novel approach that offers another alternative, allowing to track history but also to compare data, mapped into static structures. We define a conceptual model and provide possible logical adaptations to implement it on current commercial OLAP systems. At last, we present the global architecture that we used for our prototype.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sales forecasting systems are used by enterprise managers and executives to better understand the market trends and prepare appropriate business plans. These decision support systems usually use a data warehouse to store data and OLAP tools to visualize query results. A specific feature of sales forecasting systems regarding future predictions modification is backward propagation of updates, which is the computation of the impact of modifications on summaries over base data. In Data warehouses, some methods propagate updates in hierarchies when data sources are subject to modifications. However, very few works have been devoted so far, regarding update propagation from summaries to data sources. This paper proposes an algorithm called PAM (Propagation of Aggregate Modification), to efficiently propagate modifications on summaries over base data. Experiments on an operational application (Anticipeo) have been conducted.
    Proceedings of the 17th international conference on Database Systems for Advanced Applications - Volume Part II; 04/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cloud intelligence is a collection of technologies emerging from the migration of business intelligence and analytics technologies to a cloud computing environment combined with exploiting the massive range of new intelligence opportunities opened up by cloud computing. Cloud computing introduces several trends which require traditional business intelligence techniques to be re-thought, including agility, the ability to assemble resources, e.g., data sources, on-demand, and virtualization, e.g., that data are provided as a service over the web rather than stored in local databases. This paper focuses on the combination of data source agility and data-as-a-service virtualization and its use for cloud intelligence. After presenting the novel vision of the Cloud Warehouse, the paper goes on to present a comprehensive semantic foundation for on-demand multidimensional data integration, including formal data models, a range of query operators and re-write rules for optimization. This semantic foundation provides a sound formal basis for on-demand multidimensional data integration, which is a cornerstone of cloud intelligence.
    The Journal of Supercomputing 07/2013; 65(1). DOI:10.1007/s11227-011-0712-3 · 0.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Résumé. Un entrepôt de données permet d'intégrer des sources de données hé-térogènes à des fins d'analyse. Un des points clés de la réussite du processus d'entreposage de données réside dans la définition du modèle de l'entrepôt en fonction des sources de données et des besoins d'analyse. Une fois l'entrepôt conçu, le contenu et la structure des sources de données, tout comme les besoins d'analyse sont amenés à évoluer et nécessitent ainsi une évolution du modèle de l'entrepôt (schéma et données). Dans cet article, nous présentons un pano-rama de différents travaux portant sur l'évolution du modèle dans les entrepôts de données. Nous comparons et discutons ces travaux selon les critères qui nous semblent pertinents pour cette problématique. Nous dressons également les pers-pectives de recherche qui en découlent.

Full-text (2 Sources)

Available from
May 20, 2014