Conference Paper

Interactive Rendering of Translucent Objects.

Max-Planck-Inst. fur Inf., Saarbrucken, Germany
DOI: 10.1109/PCCGA.2002.1167862 Conference: 10th Pacific Conference on Computer Graphics and Applications (PG 2002), 9-11 October 2002, Beijing, China
Source: DBLP

ABSTRACT This paper presents a rendering method for translucent objects, in which view point and illumination can be modified at interactive rates. In a preprocessing step the impulse response to incoming light impinging at each surface point is computed and stored in two different ways: The local effect on close-by surface points is modeled as a per-texel filter kernel that is applied to a texture map representing the incident illumination. The global response (i.e. light shining through the object) is stored as vertex-to-vertex throughput factors for the triangle mesh of the object. During rendering, the illumination map for the object is computed according to the current lighting situation and then filtered by the precomputed kernels. The illumination map is also used to derive the incident illumination on the vertices which is distributed via the vertex-to-vertex throughput factors to the other vertices. The final image is obtained by combining the local and global response. We demonstrate the performance of our method for several models.

0 Bookmarks
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is hard to efficiently model the light transport in scenes with translucent objects for interactive applications. The interreflection between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows, and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflection or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflection and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.
    11/2013; 20(7). DOI:10.1109/TVCG.2013.256
  • [Show abstract] [Hide abstract]
    ABSTRACT: Light propagation in scenes with translucent objects is hard to model efficiently for interactive applications. The inter-reflections between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflections or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflections and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form-factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.
    Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games; 03/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present an enhanced subsurface light propagation volumes (ESLPV) method for real-time rendering of translucent materials. Our method is an extension of the subsurface light propagation volumes (SSLPV) (Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, HPG ’11, pp 7–14 ACM 2011) technique. We improve the SSLPV by incorporating a single-scattering framework that uses the same spherical harmonics (SH) storage structure as the SSLPV. The new single-scattering technique deposits radiance as SH coefficients during a ray marching procedure. The final result is rendered using a ray tracer with importance sampling along the camera ray. This framework also enables the ESLPV to render refractive objects. In addition, we also propose a distance transform optimization that can remove the unnecessary computations during the propagation cycle of LPV (Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10, pp 99–107 ACM 2010) based methods. A hierarchical propagation process is also proposed to render highly translucent materials. Similar to the SSLPV, our ESLPV method contains no precomputations, and has low storage requirements that are independent of the mesh size.
    The Visual Computer 06/2014; 30(6-8):821-831. DOI:10.1007/s00371-014-0952-3 · 1.07 Impact Factor

Full-text (2 Sources)

Download
100 Downloads
Available from
May 21, 2014