Conference Paper

The proximity toolkit: prototyping proxemic interactions in ubiquitous computing ecologies.

DOI: 10.1145/2047196.2047238 Conference: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, October 16-19, 2011
Source: DBLP

ABSTRACT People naturally understand and use proxemic relationships (e.g., their distance and orientation towards others) in everyday situations. However, only few ubiquitous computing (ubicomp) systems interpret such proxemic relationships to mediate interaction (proxemic interaction). A technical problem is that developers find it challenging and tedious to access proxemic information from sensors. Our Proximity Toolkit solves this problem. It simplifies the exploration of interaction techniques by supplying fine-grained proxemic information between people, portable devices, large interactive surfaces, and other non-digital objects in a room-sized environment. The toolkit offers three key features. 1) It facilitates rapid prototyping of proxemic-aware systems by supplying developers with the orientation, distance, motion, identity, and location information between entities. 2) It includes various tools, such as a visual monitoring tool, that allows developers to visually observe, record and explore proxemic relationships in 3D space. (3) Its flexible architecture separates sensing hardware from the proxemic data model derived from these sensors, which means that a variety of sensing technologies can be substituted or combined to derive proxemic information. We illustrate the versatility of the toolkit with proxemic-aware systems built by students.

0 Followers
 · 
84 Views
  • Personal and Ubiquitous Computing 01/2014; 19(1):175-187. DOI:10.1007/s00779-014-0769-0 · 1.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Munin, a software framework for building ubiquitous analytics environments consisting of multiple input and output surfaces, such as tabletop displays, wall-mounted displays, and mobile devices. Munin utilizes a service-based model where each device provides one or more dynamically loaded services for input, display, or computation. Using a peer-to-peer model for communication, it leverages IP multicast to replicate the shared state among the peers. Input is handled through a shared event channel that lets input and output devices be fully decoupled. It also provides a data-driven scene graph to delegate rendering to peers, thus creating a robust, fault-tolerant, decentralized system. In this paper, we describe Munin's general design and architecture, provide several examples of how we are using the framework for ubiquitous analytics and visualization, and present a case study on building a Munin assembly for multidimensional visualization. We also present performance results and anecdotal user feedback for the framework that suggests that combining a service-oriented, data-driven model with middleware support for data sharing and event handling eases the design and execution of high performance distributed visualizations.
    IEEE Transactions on Visualization and Computer Graphics 02/2015; 21(2):215-228. DOI:10.1109/TVCG.2014.2337337 · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are all sorts of consumer electronics in a home environment. Using "apps" to interact with each device is neither feasible nor practical in an ubicomp future. Prototyping and evaluating interaction concepts for this future is a challenge. This paper proposes four concepts for device discovery and device interaction implemented in a virtual environment. The interaction concepts were compared in a controlled experiment for evaluation and comparison. Some statistically significant differences and subjective preferences could be observed in the quantitative and qualitative data respectively. Overall, the results indicate that the proposed interaction concepts were found natural and easy to use.
    The 6th international conference on Intelligent Human Computer Interaction, IHCI 2014, Evry, France; 12/2014

Full-text (2 Sources)

Download
61 Downloads
Available from
Jun 3, 2014