Conference Paper

Self-organizing Deformable Model: A New Method for Fitting Mesh Model to Given Object Surface.

DOI: 10.1007/11595755_19 Conference: Advances in Visual Computing, First International Symposium, ISVC 2005, Lake Tahoe, NV, USA, December 5-7, 2005, Proceedings
Source: DBLP

ABSTRACT This paper presents a new method for projecting a mesh model of a source object onto a surface of an arbitrary target object.
A deformable model, called Self-organizing Deformable Model(SDM), is deformed so that the shape of the model is fitted to
the target object. We introduce an idea of combining a competitive learning and an energy minimization into the SDM deformation.
Our method is a powerful tool in the areas of computer vision and computer graphics. For example, it enables to map mesh models
onto various kinds of target surfaces like other methods for a surface parameterization, which have focused on specified target
surface. Also the SDM can reconstruct shapes of target objects like general deformable models.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 機能的定位脳手術ではヒト脳座標アトラス(Schaltenbrand & Wahren 1977)を参考に標的神経核の仮座標が定められることが多い。しかし個人差の大きい脳を一つのアトラスで表しその座標を機能的定位脳手術で用いるのは危険である。多数の脳標本から形状を平均化した標準脳でアトラスを作成し,これを各個体の脳形状に応じてnon-rigid に内部座標を補正できるテイラーメイド脳アトラスが望まれる。ヒト脳のように大きく柔らかな臓器を,変形させずに切片化し,なおかつ良質の組織像を得るためには,特殊な機材と熟練,そして膨大な時間を要する。そのため,視床や基底核・脳幹部など深部構造に限られた狭い範囲を座標化するか,機械的変形を無視して脳半球全体を座標化するかの選択に迫られる。我々は三次元的整合性と細胞構築を両立させる,より簡便なヒト脳座標アトラスの作成法を検討した。日本人の献体脳を用い,非接触型3 次元デジタイザーで脳全体の初期形状を記録した後,正確な平行切断で1 cm厚にブロック化,振動刃ミクロトームを用いて100 μmの切片を作成,組織切片をニッスル染色後,スキャナで電子化し,3D 再構築解析ソフトウェアで用手的に組織構造の輪郭をトレースし再構築した。これらの手法により標本作製に伴う機械的変形が全くない,三次元的整合性と細胞構築を両立させる,より簡便なヒト脳アトラスの作成法を確立できた。
    機能的脳神経外科. 12/2010; 49(2):136-141.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In 3D computer graphics, mesh parameterization is a key technique for digital geometry processings(DGP) such as morphing, shape blending, texture transfer, re-meshing and so on. This paper proposes a novel approach for parameterizing a mesh into another one directly. The main idea of our method is to combine a competitive learning and a leastsquare mesh techniques. It is enough to give some semantic feature correspondences between target meshes, even if they are in different shapes or in different poses. We show the effectiveness of our approach by giving some examples of its applications.
    Computer Graphics and Applications, 2007. PG '07. 15th Pacific Conference on; 01/2007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An ideal human brain atlas must provide the universal coordinates of standard healthy brain. Morphology of human brain contains considerable inter-individual variety; however, the classical human brain atlases have been made from al limited number of materials. A large organ such as human brain is subject to mechanical deformation and the production of stereotactic human brain atlases is still time-consuming and needs special instruments, environments and skills. To achieve both the spatial consistency and high histological quality for stereotactic human brain atlases, we have established a novel technique for constructing the stereotactic brain atlas using a formalin-fixed cadaver brain of the Japanese, blade-oscillation micro-slicing and digital imaging techniques. Our method enabled the accurate reconstruction of human brain histological slices with the three-dimensional consistency necessary for the stereotactic atlases of human brain, as well as the successful preservation of original macroscopic shape and cytoarchitecture.
    Japan Society for Stereotactic and Functional Neurosurgery; 01/2010

Full-text (3 Sources)

Available from
Jun 2, 2014