Conference Paper

Connecting the Dots between Laser Waveforms and Herbaceous Biomass for Assessment of Land Degradation using Small-footprint Waveform LiDAR Data.

Chester F. Carlson Center for Imaging Sci., Rochester Inst. of Technol., Rochester, NY, USA
DOI: 10.1109/IGARSS.2009.5418078 Conference: IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2009, July 12-17, 2009, University of Cape Town, Cape Town, South Africa, Proceedings
Source: DBLP

ABSTRACT Measurement and management of vegetation biomass accumulation in ecosystems typically involves extensive field data collection, which can be expensive and time consuming, while leaving the user with relatively crude inputs to intricate biomass models. Light detection and ranging (LiDAR) remote sensing, which provides extensive height measurements of terrain and vegetation, has become an effective alternative to characterize vegetation structure. In this paper, we report on ongoing efforts at developing signal processing approaches to model herbaceous biomass using a new generation of airborne laser scanners, namely full-waveform LiDAR systems. Structural and statistic-based feature metrics are directly derived from LiDAR waveforms at the pixel level and related to plot-level field data. Initial results reveal a definite correlation between the LiDAR waveform and herbaceous biomass. Ongoing research focuses on the links between fractional cover estimated from imaging spectroscopy and woody biomass.

Download full-text


Available from: Jan Andreas van Aardt, Jun 27, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A raw incoming (received) Light Detection And Ranging (LiDAR) waveform typically exhibits a stretched and relatively featureless character, e.g., the LiDAR signal is smeared and the effective spatial resolution decreases. This is attributed to a fixed time span allocated for detection, the sensor’s variable outgoing pulse signal, receiver impulse response, and system noise. Theoretically, such a loss of resolution can be recovered by deconvolving the system response from the measured signal. In this paper, we present a comparative controlled study of three deconvolution techniques, namely, Richardson–Lucy, Wiener filter, and nonnegative least squares, in order to verify which method is quantitatively superior to others. These deconvolution methods were compared in terms of two use cases: 1) ability to recover the true cross-sectional profile of an illuminated object based on the waveform simulation of a virtual 3-D tree model and 2) ability to differentiate herbaceous biomass based on the waveform simulation of virtual grass patches. All the simulated waveform data for this study were derived via the “Digital Imaging and Remote Sensing Image Generation” radiative transfer modeling environment. Results show the superior performance for the Richardson–Lucy algorithm in terms of small root mean square error for recovering the true cross section, low false discovery rate for detecting the unobservable local peaks in the stretched raw waveforms, and high classification accuracy for differentiating herbaceous biomass levels.
    IEEE Transactions on Geoscience and Remote Sensing 06/2011; 49(6):2402-2414. DOI:10.1109/TGRS.2010.2103080 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extraction of structural object metrics from a next-generation remote sensing modality, namely waveform Light Detection and Ranging (LiDAR), has garnered increasing interest from the remote sensing research community. However, the raw incoming (received) LiDAR waveform typically exhibits a stretched, misaligned, and relatively distorted character. In other words, the LiDAR signal is smeared and the effective temporal (vertical) resolution decreases, which is attributed to a fixed time span allocated for detection, the sensor's variable outgoing pulse signal, off-nadir scanning, the receiver impulse response impacts, and system noise. Theoretically, such a loss of resolution and increased data ambiguity can be remediated by using proven signal preprocessing approaches. In this paper, we present a robust signal preprocessing chain for waveform LiDAR calibration, which includes noise reduction, deconvolution, waveform registration, and angular rectification. This preprocessing chain was initially validated using simulated waveform data, which were derived via the digital imaging and remote sensing image generation modeling environment. We also verified the approach using real small-footprint waveform LiDAR data collected by the Carnegie Airborne Observatory in a savanna region of South Africa and specifically in terms of modeling woody biomass in this region. Metrics, including the spectral angle for cross-section recovery assessment and goodness-of-fit (R2) statistics, along with the root-mean-squared error for woody biomass estimation, were used to provide a comprehensive quantitative evaluation of the performance of this preprocessing chain. Results showed that our approach significantly increased our ability to recover the temporal signal resolution, improved geometric rectification of raw waveform LiDAR, and resulted in improved waveform-based woody biomass estimation. This preprocessing chain has the potential to be applied across the board for h- gh fidelity processing of small-footprint waveform LiDAR data, thereby facilitating the extraction of valid and useful structural metrics from ground objects.
    IEEE Transactions on Geoscience and Remote Sensing 08/2012; 50(8):3242-3255. DOI:10.1109/TGRS.2011.2178420 · 2.93 Impact Factor