Conference Paper

Parser Combination by Reparsing.

Conference: Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings, June 4-9, 2006, New York, New York, USA
Source: DBLP

ABSTRACT We present a novel parser combination scheme that works by reparsing input sen- tences once they have already been parsed by several different parsers. We apply this idea to dependency and constituent parsing, generating results that surpass state-of-the- art accuracy levels for individual parsers.

0 Bookmarks
 · 
61 Views
  • Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies; 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dependency parsing has made many advancements in recent years, in particular for English. There are a few dependency parsers that achieve comparable accuracy scores with each other but with very different types of errors. This paper examines creating a new dependency structure through ensemble learning using a hybrid of the outputs of various parsers. We combine all tree outputs into a weighted edge graph, using 4 weighting mechanisms. The weighted edge graph is the input into our ensemble system and is a hybrid of very different parsing techniques (constituent parsers, transition-based dependency parsers, and a graph-based parser). From this graph we take a maximum spanning tree. We examine the new dependency structure in terms of accuracy and errors on individual part-of-speech values. The results indicate that using a greater number of more varied parsers will improve accuracy results. The combined ensemble system, using 5 parsers based on 3 different parsing techniques, achieves an accuracy score of 92.58%, beating all single parsers on the Wall Street Journal section 23 test set. Additionally, the ensemble system reduces the average relative error on selected POS tags by 9.82%.
    Proceedings of the Workshop on Innovative Hybrid Approaches to the Processing of Textual Data; 04/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a higher-order model for constituent parsing aimed at utilizing more local structural context to decide the score of a grammar rule instance in a parse tree. Experiments on English and Chinese treebanks confirm its advantage over its first-order version. It achieves its best F1 scores of 91.86% and 85.58% on the two languages, respectively, and further pushes them to 92.80% and 85.60% via combination with other high-performance parsers.
    Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2; 07/2012

Full-text

View
1 Download
Available from