Conference Paper

A Dynamic Approach for MPE and Weighted MAX-SAT.

Conference: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007
Source: DBLP

ABSTRACT The problem of Most Probable Explanation (MPE) arises in the scenario of probabilistic inference: finding an assignment to all variables that has the maximum likelihood given some evidence. We consider the more general CNF-based MPE prob- lem, where each literal in a CNF-formula is asso- ciated with a weight. We describe reductions be- tween MPE and weighted MAX-SAT, and show that both can be solved by a variant of weighted model counting. The MPE-SAT algorithm is quite competitive with the state-of-the-art MAX-SAT, WCSP, and MPE solvers on a variety of problems.

0 Bookmarks
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The problem of learning discrete Bayesian networks from data is encoded as a weighted MAX-SAT problem and the MaxWalkSat local search algorithm is used to address it. For each dataset, the per-variable summands of the (BDeu) marginal likelihood for different choices of parents ('family scores') are computed prior to applying MaxWalkSat. Each permissible choice of parents for each variable is encoded as a distinct propositional atom and the associated family score encoded as a 'soft' weighted single-literal clause. Two approaches to enforcing acyclicity are considered: either by encoding the ancestor relation or by attaching a total order to each graph and encoding that. The latter approach gives better results. Learning experiments have been conducted on 21 synthetic datasets sampled from 7 BNs. The largest dataset has 10,000 datapoints and 60 variables producing (for the 'ancestor' encoding) a weighted CNF input file with 19,932 atoms and 269,367 clauses. For most datasets, MaxWalkSat quickly finds BNs with higher BDeu score than the 'true' BN. The effect of adding prior information is assessed. It is further shown that Bayesian model averaging can be effected by collecting BNs generated during the search.
    06/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is the first of two papers presenting and evaluating the power of a new framework for combinatorial optimization in graphical models, based on AND/OR search spaces. We introduce a new generation of depth-first Branch-and-Bound algorithms that explore the AND/OR search tree using static and dynamic variable orderings. The virtue of the AND/OR representation of the search space is that its size may be far smaller than that of a traditional OR representation, which can translate into significant time savings for search algorithms. The focus of this paper is on linear space search which explores the AND/OR search tree. In the second paper we explore memory intensive AND/OR search algorithms. In conjunction with the AND/OR search space we investigate the power of the mini-bucket heuristics in both static and dynamic setups. We focus on two most common optimization problems in graphical models: finding the Most Probable Explanation in Bayesian networks and solving Weighted CSPs. In extensive empirical evaluations we demonstrate that the new AND/OR Branch-and-Bound approach improves considerably over the traditional OR search strategy and show how various variable ordering schemes impact the performance of the AND/OR search scheme.
    Artificial Intelligence 01/2009; · 2.19 Impact Factor
  • Source

Full-text

Download
0 Downloads
Available from