Conference Paper

Corona: System Implications of Emerging Nanophotonic Technology.

Univ. of Wisconsin - Madison, Madison, WI;
DOI: 10.1109/ISCA.2008.35 Conference: 35th International Symposium on Computer Architecture (ISCA 2008), June 21-25, 2008, Beijing, China
Source: DBLP

ABSTRACT We expect that many-core microprocessors will push performance per chip from the 10 gigaflop to the 10 teraflop range in the coming decade. To support this increased performance, memory and inter-core bandwidths will also have to scale by orders of magnitude. Pin limitations, the energy cost of electrical signaling, and the non-scalability of chip-length global wires are significant bandwidth impediments. Recent developments in silicon nanophotonic technology have the potential to meet these off- and on-stack bandwidth requirements at acceptable power levels. Corona is a 3 D many-core architecture that uses nanophotonic communication for both inter-core communication and off-stack communication to memory or I/O devices. Its peak floating-point performance is 10 teraflops. Dense wavelength division multiplexed optically connected memory modules provide 10 terabyte per second memory bandwidth. A photonic crossbar fully interconnects its 256 low-power multithreaded cores at 20 terabyte per second bandwidth. We have simulated a 1024 thread Corona system running synthetic benchmarks and scaled versions of the SPLASH-2 benchmark suite. We believe that in comparison with an electrically-connected many-core alternative that uses the same on-stack interconnect power, Corona can provide 2 to 6 times more performance on many memory intensive workloads, while simultaneously reducing power.

0 Bookmarks
 · 
151 Views

Full-text (2 Sources)

Download
40 Downloads
Available from
Jun 10, 2014