Conference Proceeding

A Study on the Design of Floating-Point Functions in FPGAs.

01/2003; DOI:10.1007/978-3-540-45234-8_137 In proceeding of: Field Programmable Logic and Application, 13th International Conference, FPL 2003, Lisbon, Portugal, September 1-3, 2003, Proceedings
Source: DBLP

ABSTRACT Floating-Point Operations represent a common task in a variety of applications, but such operations often result in a bottleneck,
due to the large number of machine cycles required to compute them. Even though the FPGA community has developed advanced
algorithms to improve the speed of FLOPs, floating-point transcendental functions are still underdeveloped. In this paper,
we discuss some of the tradeoffs faced when implementing floating-point functions in FPGAs. These techniques, including lookup
tables, and CORDIC algorithms, have been used in the past for the implementation of fixed-point analytic functions. This paper
seeks to apply those methods to floating-point functions. The implementation results from different versions of a floating-point
sine function are summarized in terms of speed, area, and accuracy to understand the effect of different architectural alternatives.

0 0
 · 
0 Bookmarks
 · 
43 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Les circuits reconfigurables FPGA ont désormais une capacité telle qu'ils peuvent être utilisés à des tâches d'accélération de calcul en virgule flottante. La littérature (et depuis peu les constructeurs) proposent des opérateurs pour les quatre opérations. L'étape suivante est de proposer des opérateurs pour les fonctions élémentaires les plus utilisées. Parmi celles-ci, nous proposons des architectures dédiées pour l'évaluation des fonctions exponentielles, logarithme, sinus et cosinus, et étudions les compromis possibles. Pour chacune de ces fonctions, un seul de ces opérateurs surpasse d'un facteur dix les processeurs généralistes en terme de débit, tout en occupant une fraction des ressources matérielles du FPGA. Tous ces opérateurs sont disponibles librement sur http://www.ens-lyon.fr/LIP/Arenaire/.
    01/2008;
  • [show abstract] [hide abstract]
    ABSTRACT: Computation of floating-point transcendental functions has a relevant importance in a wide variety of scientific applications, where the area cost, error and latency are important requirements to be attended. This paper describes a flexible FPGA implementation of a parameterizable floating-point library for computing sine, cosine, arctangent and exponential functions using the CORDIC algorithm. The novelty of the proposed architecture is that by sharing the same resources the CORDIC algorithm can be used in two operation modes, allowing it to compute the sine, cosine or arctangent functions. Additionally, in case of the exponential function, the architectures change automatically between the CORDIC or a Taylor approach, which helps to improve the precision characteristics of the circuit, specifically for small input values after the argument reduction. Synthesis of the circuits and an experimental analysis of the errors have demonstrated the correctness and effectiveness of the implemented cores and allow the designer to choose, for general-purpose applications, a suitable bit-width representation and number of iterations of the CORDIC algorithm.
    Programmable Logic Conference (SPL), 2010 VI Southern; 04/2010
  • [show abstract] [hide abstract]
    ABSTRACT: Several scientific applications need a high precision computation of transcendental functions. This paper presents a hardware implementation of a parameterizable floating-point library for computing sine, cosine and arctangent functions using both CORDIC algorithm and Taylor series expansion for different bit-width representations. The results include the accuracy as a design criterion of the proposed hardware architectures; therefore, a tradeoff analysis between the cost in area and the number of iterations against the error associated is done in order to choose a suitable format for computing transcendental functions. The proposed architectures were validated using the Matlab results as a statistical estimator in order to compute the Mean Square Error (MSE). Synthesis and simulation results demonstrate the correctness and effectiveness of the implemented hardware transcendental functions.
    Very Large Scale Integration (VLSI-SoC), 2009 17th IFIP International Conference on; 11/2009

Fernando E. Ortiz