Conference Paper

Exploiting gradient information in numerical multi--objective evolutionary optimization.

DOI: 10.1145/1068009.1068138 Conference: Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, June 25-29, 2005
Source: DBLP

ABSTRACT Various multi--objective evolutionary algorithms (MOEAs) have obtained promising results on various numerical multi--objective optimization problems. The combination with gradient--based local search operators has however been limited to only a few studies. In the single--objective case it is known that the additional use of gradient information can be beneficial. In this paper we provide an analytical parametric description of the set of all non--dominated (i.e. most promising) directions in which a solution can be moved such that its objectives either improve or remain the same. Moreover, the parameters describing this set can be computed efficiently using only the gradients of the individual objectives. We use this result to hybridize an existing MOEA with a local search operator that moves a solution in a randomly chosen non--dominated improving direction. We test the resulting algorithm on a few well--known benchmark problems and compare the results with the same MOEA without local search and the same MOEA with gradient--based techniques that use only one objective at a time. The results indicate that exploiting gradient information based on the non--dominated improving directions is superior to using the gradients of the objectives separately and that it can furthermore improve the result of MOEAs in which no local search is used, given enough evaluations.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Successful hybridization of single-objective evolutionary algorithm with gradient based methods has shown promising results. However, studies of hybridized Multi-Objective Evolutionary Algorithm are limited, especially in the domain of image analysis. This paper presents a novel methodology of hybridization of multi-objective genetic algorithm for the real world optimization problem of facial analysis of multiple camera images by 2.5D Appearance Model. Facial large lateral movements make acquisition and analysis of facial images by single camera inefficient. Moreover, non-convex multi-dimensional search space formed by the face search by appearance model requires an efficient optimization methodology. Currently, with wide availability of inexpensive cameras, a multi-view system is as practical as a single-view system. To manage these multiple informations, multi-objective genetic algorithm is employed to optimize the face search. To efficiently tackle the problem of non-convexity of the search space, hybridization of NSGA-II (Non-dominated Sorting Genetic Algorithm) with Gradient Descent is proposed in this paper. For this hybridization, we propose a gradient operator in NSGA-II, which computes gradients of the solutions in conjunction with the existing operator of mutation. Thus, it does not increase the computational cost of the system. Another proposition includes a unique method of calculating the relevant information of each camera in a multiple camera system which makes the hybridization procedure efficient and robust. Our proposed algorithm is applied on different facial poses of CMU-PIE database, webcam face images and synthetic face images, and the results are compared with a single view system and a non-hybrid multiple camera system. Simulation results validate the efficiency, accuracy and robustness achieved.
    Memetic Computing 01/2010; 2:25-46.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The production planning optimization for mineral processing is important for non-renewable raw mineral resource utilization. This paper presents a nonlinear multiobjective programming model for a mineral processing production planning (MPPP) for optimizing five production indices, including its iron concentrate output, the concentrate grade, the concentration ratio, the metal recovery, and the production cost. A gradient-based hybrid operator is proposed in two evolutionary algorithms named the gradient-based NSGA-II (G-NSGA-II) and the gradient-based SPEA2 (G-SPEA2) for MPPP optimization. The gradient-based operator of the proposed hybrid operator is normalized as a strictly convex cone combination of negative gradient direction of each objective, and is provided to move each selected point along some descent direction of the objective functions to the Pareto front, so as to reduce the invalid trial times of crossover and mutation. Two theorems are established to reveal a descent direction for the improvement of all objective functions. Experiments on standard test problems, namely ZDT 1-3, CONSTR, SRN, and TNK, have demonstrated that the proposed algorithms can improve the chance of minimizing all objectives compared to pure evolutionary algorithms in solving the multiobjective optimization problems with differentiable objective functions under short running time limitation. Computational experiments in MPPP application case have indicated that the proposed algorithms can achieve better production indices than those of NSGA-II, T-NSGA-FD, T-NSGA-SP, and SPEA2 in the case of small number of generations. Also, those experimental results show that the proposed hybrid operators have better performance than that of pure gradient-based operators in attaining either a broad distribution or maintaining much diversity of obtained non-dominated solutions.
    IEEE Transactions on Evolutionary Computation 09/2011; · 4.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work introduces a hybrid between an elitist multi-objective evolutionary algorithm and a gradient-based descent method, which is applied only to certain (selected) solutions. Our proposed approach requires a low number of objective function evaluations to converge to a few points in the Pareto front. Then, the rest of the Pareto front is reconstructed using a method based on rough sets theory, which also requires a low number of objective function evaluations. Emphasis is placed on the effectiveness of our proposed hybrid approach when increasing the number of decision variables, and a study of the scalability of our approach is also presented.
    Evolutionary Computation, 2009. CEC '09. IEEE Congress on; 06/2009

Full-text (2 Sources)

View
7 Downloads
Available from
May 21, 2014