Conference Paper

Error-entropy based channel state estimation of spatially correlated MIMO-OFDM

University of New South Wales, Sydney, Australia
DOI: 10.1109/ICASSP.2011.5947132 Conference: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, May 22-27, 2011, Prague Congress Center, Prague, Czech Republic
Source: DBLP


This paper deals with optimized training sequences to estimate multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) channel states in the presence of spatial fading correlations. The optimization criterion is the entropy minimization of the error between the high multi-dimensional and correlated channel state and its estimator. The globally optimized training sequences are exactly solved by a semi-definite programming (SDP) of tractable computational complexity O((M t (M t + 1)/2)2.5), where M t is the transmit antenna number. With new tight two-sided bounds for the objective function, the optimal value of the generic SDP can be approximately solved by the standard water-filling algorithm. Intensive simulation results are provided to illustrate the performance of our methods.

Download full-text


Available from: Ha H Nguyen, Aug 14, 2014