A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape

International Journal of Computer Vision (Impact Factor: 3.53). 01/2007; 72(2):195-215. DOI: 10.1007/s11263-006-8711-1
Source: DBLP

ABSTRACT Since their introduction as a means of front propagation and their first application to edge-based segmentation in the early 90's, level set methods have become increasingly popular as a general framework for image segmentation. In this paper, we present a survey of a specific class of region-based level set segmentation methods and clarify how they can all be derived from a common statistical framework. Region-based segmentation schemes aim at partitioning the image domain by progressively fitting statistical models to the intensity, color, texture or motion in each of a set of regions. In contrast to edge-based schemes such as the classical Snakes, region-based methods tend to be less sensitive to noise. For typical images, the respective cost functionals tend to have less local minima which makes them particularly well-suited for local optimization methods such as the level set method. We detail a general statistical formulation for level set segmentation. Subsequently, we clarify how the integration of various low level criteria leads to a set of cost functionals. We point out relations between the different segmentation schemes. In experimental results, we demonstrate how the level set function is driven to partition the image plane into domains of coherent color, texture, dynamic texture or motion. Moreover, the Bayesian formulation allows to introduce prior shape knowledge into the level set method. We briefly review a number of advances in this domain.


Available from: Rachid Deriche, May 06, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose a new algorithmic approach to the non-smooth and non-convex Potts problem (also called piecewise-constant Mumford–Shah problem) for inverse imaging problems. We derive a suitable splitting into specific subproblems that can all be solved efficiently. Our method does not require a priori knowledge on the gray levels nor on the number of segments of the reconstruction. Further, it avoids anisotropic artifacts such as geometric staircasing. We demonstrate the suitability of our method for joint image reconstruction and segmentation. We focus on Radon data, where we in particular consider limited data situations. For instance, our method is able to recover all segments of the Shepp–Logan phantom from seven angular views only. We illustrate the practical applicability on a real positron emission tomography dataset. As further applications, we consider spherical Radon data as well as blurred data.
    Inverse Problems 02/2015; 31(2). DOI:10.1088/0266-5611/31/2/025003 · 1.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the second most common cancer and the leading cause of cancer death among women. Medical imaging has become an indispensable tool for its diagnosis and follow up. During the last decade, the medical community has promoted to incorporate Ultra-Sound (US) screening as part of the standard routine. The main reason for using US imaging is its capability to differentiate benign from malignant masses, when compared to other imaging techniques. The increasing usage of US imaging encourages the development of Computer Aided Diagnosis (CAD) systems applied to Breast Ultra-Sound (BUS) images. However accurate delineations of the lesions and structures of the breast are essential for CAD systems in order to extract information needed to perform diagnosis. This article proposes a highly modular and flexible framework for segmenting lesions and tissues present in BUS images. The proposal takes advantage of optimization strategies using super-pixels and high-level de-scriptors, which are analogous to the visual cues used by radiologists. Qualitative and quantitative results are provided stating a performance within the range of the state-of-the-art.
    QCAV; 06/2015
  • Source