Article

Splines in Higher Order TV Regularization.

International Journal of Computer Vision (Impact Factor: 3.62). 01/2006; 70:241-255. DOI: 10.1007/s11263-006-8066-7
Source: DBLP

ABSTRACT Splines play an important role as solutions of various interpolation and approximation problems that minimize special functionals in some smoothness spaces. In this paper, we show in a strictly discrete setting that splines of degree m − 1 solve also a minimization problem with quadratic data term and m-th order total variation (TV) regularization term. In contrast to problems with quadratic regularization terms involving m-th order derivatives, the spline knots are not known in advance but depend on the input data and the regularization parameter �. More precisely, the spline knots are determined by the contact points of the m-th discrete antiderivative of the solution with the tube of width 2� around the m-th discrete antiderivative of the input data. We point out that the dual formulation of our minimization problem can be considered as support vector regression problem in the discrete counterpart of the Sobolev space W m 2,0. From this point of view, the solution of our minimization problem has a sparse representation in terms of discrete fundamental splines.

0 Bookmarks
 · 
104 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper provides a mathematical analysis of higher order variational methods and nonlinear diffusion filtering for image denoising. Besides the average grey value, it is shown that higher order diffusion filters preserve higher moments of the initial data. While a maximum-minimum principle in general does not hold for higher order filters, we derive stability in the 2-norm in the continuous and discrete setting. Considering the filters in terms of forward and backward diffusion, one can explain how not only the preservation, but also the enhancement of certain features in the given data is possible. Numerical results show the improved denoising capabilities of higher order filtering compared to the classical methods.
    Journal of Mathematical Imaging and Vision 01/2009; 35:208-226. · 1.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exist, including total variation regularization, mean shift clustering, stepwise jump placement, running medians, convex clustering shrinkage and bilateral filtering; conventional linear signal processing methods are fundamentally unsuited. This paper (part I, the first of two) shows that most of these methods are associated with a special case of a generalized functional, minimized to achieve PWC denoising. The minimizer can be obtained by diverse solver algorithms, including stepwise jump placement, convex programming, finite differences, iterated running medians, least angle regression, regularization path following and coordinate descent. In the second paper, part II, we introduce novel PWC denoising methods, and comparisons between these methods performed on synthetic and real signals, showing that the new understanding of the problem gained in part I leads to new methods that have a useful role to play.
    Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences 11/2011; 467(2135):3088-3114. · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We are interested in minimizing functionals with ℓ2 data and gradient fitting term and ℓ1 regularization term with higher order derivatives in a discrete setting. We examine the structure of the solution in 1D by reformulating the original problem into a contact problem which can be solved by dual optimization techniques. The solution turns out to be a ’smooth’ discrete polynomial spline whose knots coincide with the contact points while its counterpart in the contact problem is a discrete version of a spline with higher defect and contact points as knots. In 2D we modify Chambolle’s algorithm to solve the minimization problem with the ℓ1 norm of interacting second order partial derivatives as regularization term. We show that the algorithm can be implemented efficiently by applying the fast cosine transform. We demonstrate by numerical denoising examples that the ℓ2 gradient fitting term can be used to avoid both edge blurring and staircasing effects.
    Advances in Computational Mathematics 01/2009; 30(1):79-99. · 1.47 Impact Factor

Full-text

View
0 Downloads