An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification.

Expert Systems (Impact Factor: 0.75). 05/2009; 26:202-217. DOI: 10.1111/j.1468-0394.2009.00479.x
Source: DBLP

ABSTRACT In this paper Elman's recurrent neural network (ERNN) is employed for automatic identification of healthy and pathological gait and subsequent diagnosis of the neurological disorder in pathological gaits from the respective gait patterns. Stance, swing and double support intervals (expressed as percentages of stride) of 63 subjects were analysed for a period of approximately 300 s. The relevant gait features are extracted from cross-correlograms of these signals with corresponding signals of a reference subject. These gait features are used to train modular ERNNs performing binary and tertiary classifications. The average accuracy of binary classifiers is obtained as 90.6%–97.8% and that of tertiary classifiers is 89.8%. Hence, two hierarchical schemes are developed each of which uses more than one modular ERNN to segregate healthy, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis subjects. The average testing performances of the schemes are 83.8% and 87.1%.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease (HD) is one of the neural diseases with movement disorders like chorea, ballism, and athetosis. These symptoms play an important role on gait asymmetry, thus gait recordings are considered important resources for studying this disease. Diagnosing HD in its early stages is important and critical. We aimed to discover differences between HD and normal behavior. As the gait is semi-periodic, analyzing frequency could reveal disorders. We made an attempt to extract some proper features using power spectra density. Studies revealed that HD adds high frequencies to the spectrum on all gait phases. Statistical analysis of the gait features showed significant differences between normal and HD groups. At the end, we tried to separate the patients and healthy individuals using a new intelligent mathematical system. An artificial neural network classifier was used for this reason,and our best separation accuracy was 96.6%. This study could be the basis of designing a practical decision support system. This system can diagnose patients at the first stages of the disease, and it also can recommend suspected persons to the specialist.
    Journal of Mechanics in Medicine and Biology 02/2014; 14(01). DOI:10.1142/S0219519414500018 · 0.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present paper proposes a dual-tree complex wavelet transform (DTCWT) based approach for recognition of power system transients. Several researchers, all over the world, have so far attempted to solve the problems of recognition of power system transients, hybridizing transform-based techniques with popular computational intelligence based tools, for example, using wavelet transform and S-transform for feature extraction, followed by artificial neural networks (ANN) or fuzzy logic-based classifiers. The proposed method of hybridizing DTCWT-based feature extraction with ANN-based classification could efficiently detect several commonly occurring power quality (PQ) disturbance events. The PQ disturbance events considered include four different transient conditions, namely transients due to capacitor switching, transformer inrush currents, transients due to motor switching and transients due to short circuit faults. A detailed performance comparison with several contemporary, competing methods existing in the literatures for similar problems aptly demonstrates the suitability of the proposed method.
    Expert Systems 01/2014; 32(1). DOI:10.1111/exsy.12066 · 0.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the purpose of realizing an intelligent and highly accurate diagnosis system for neuro-degenerative diseases (NDD), such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Huntington's disease (HD), the present study investigated the classification capability of different gait statistical features extracted from gait rhythm signals. Nine statistical measures, including several seldom-used variability measures for these signals, were calculated for each time series. Next, after an evaluation of four popular machine learning methods, the optimal feature subset was generated with a hill-climbing feature selection method. Experiments were performed on a data set with 16 healthy control (CO) subjects, 13 ALS, 15 PD and 20 HD patients. When evaluated with the leave-one-out cross-validation (LOOCV) method, the highest accuracy rate for discriminating between groups of NDD patients and healthy control subjects was 96.83%. The best classification accuracy (100%) was obtained with two subtype binary classifiers (PD vs. CO and HD vs. CO).
    Biomedical Signal Processing and Control 04/2015; 18. DOI:10.1016/j.bspc.2015.02.002 · 1.53 Impact Factor