# On bipartite graphs with minimal energy

### Full-text

Xueliang Li, Jan 12, 2014 Available from:- [Show abstract] [Hide abstract]

**ABSTRACT:**The energy of a graph is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix. In this paper, we characterize the tetracyclic graph of order $n$ with minimal energy. By this, the validity of a conjecture for the case $e=n+3$ proposed by Caporossi et al. \cite{CCGH} has been confirmed. - [Show abstract] [Hide abstract]

**ABSTRACT:**For a given simple graph $G$, the energy of $G$, denoted by $\mathcal {E}(G)$, is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix, which was defined by I. Gutman. The problem on determining the maximal energy tends to be complicated for a given class of graphs. There are many approaches on the maximal energy of trees, unicyclic graphs and bicyclic graphs, respectively. In this paper, we study the maximal energy of tricyclic graphs. Let $P^{6,6,6}_n$ denote the graph with $n\geq 20$ vertices obtained from three copies of $C_6$ and a path $P_{n-18}$ by adding a single edge between each of two copies of $C_6$ to one endpoint of the path and a single edge from the third $C_6$ to the other endpoint of the $P_{n-18}$. Very recently, Aouchiche et al. [M. Aouchiche, G. Caporossi, P. Hansen, Open problems on graph eigenvalues studied with AutoGraphiX, {\it EURO J. Comput. Optim.} {\bf 1}(2013), 181--199] put forward the following conjecture: let $G$ be a tricyclic graphs on $n$ vertices with $n=20$ or $n\geq22$, then $\mathcal{E}(G)\leq \mathcal{E}(P_{n}^{6,6,6})$ with equality if and only if $G\cong P_{n}^{6,6,6}$. We partially solve this conjecture.MATCH Communications in Mathematical and in Computer Chemistry 08/2014; 72(1):183-214. · 1.83 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**Let $S(G^\sigma)$ be the skew-adjacency matrix of an oriented graph $G^\sigma$. The skew energy of $G^\sigma$ is defined as the sum of all singular values of its skew-adjacency matrix $S(G^\sigma)$. In this paper, we first deduce an integral formula for the skew energy of an oriented graph. Then we determine all oriented graphs with minimal skew energy among all connected oriented graphs on $n$ vertices with $m \ (n\le m < 2(n-2))$ arcs, which is an analogy to the conjecture for the energy of undirected graphs proposed by Caporossi {\it et al.} [G. Caporossi, D. Cvetkovi$\acute{c}$, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984-996.]Electronic Journal of Linear Algebra 04/2013; 27. · 0.51 Impact Factor