Article

Decision making with imprecise parameters.

Int. J. Approx. Reasoning 01/2010; 51:869-882. DOI: 10.1016/j.ijar.2010.06.002
Source: DBLP

ABSTRACT We analyze the impact of imprecise parameters on performance of an uncertainty-modeling tool presented in this paper. In particular, we present a reliable and efficient uncertainty-modeling tool, which enables dynamic capturing of interval-valued clusters representations sets and functions using well-known pattern recognition and machine learning algorithms. We mainly deal with imprecise learning parameters in identifying uncertainty intervals of membership value distributions and imprecise functions. In the experiments, we use the proposed system as a decision support tool for a production line process. Simulation results indicate that in comparison to benchmark methods such as well-known type-1 and type-2 system modeling tools, and statistical machine-learning algorithms, proposed interval-valued imprecise system modeling tool is more robust with less error.

0 Bookmarks
 · 
221 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fuzzy Rule-Based Systems are appropriate tools to deal with classification problems due to their good properties. However, they can suffer a lack of system accuracy as a result of the uncertainty inherent in the definition of the membership functions and the limitation of the homogeneous distribution of the linguistic labels.The aim of the paper is to improve the performance of Fuzzy Rule-Based Classification Systems by means of the Theory of Interval-Valued Fuzzy Sets and a post-processing genetic tuning step. In order to build the Interval-Valued Fuzzy Sets we define a new function called weak ignorance for modeling the uncertainty associated with the definition of the membership functions. Next, we adapt the fuzzy partitions to the problem in an optimal way through a cooperative evolutionary tuning in which we handle both the degree of ignorance and the lateral position (based on the 2-tuples fuzzy linguistic representation) of the linguistic labels.The experimental study is carried out over a large collection of data-sets and it is supported by a statistical analysis. Our results show empirically that the use of our methodology outperforms the initial Fuzzy Rule-Based Classification System. The application of our cooperative tuning enhances the results provided by the use of the isolated tuning approaches and also improves the behavior of the genetic tuning based on the 3-tuples fuzzy linguistic representation.
    International Journal of Approximate Reasoning 01/2011; 52(6):751-766. · 1.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, a new centroid type reduction method is proposed for piecewise linear interval type-2 fuzzy sets based on geometrical approach. The main idea behind the proposed method relies on the assumption that the part of footprint of uncertainty (FOU) of an interval type-2 fuzzy set (IT2FS) has a constant width where the centroid is searched. This constant width assumption provides a way to calculate the centroid of an IT2FS in closed form by using derivative based optimization without any need of iterations. When the related part of FOU is originally constant width, the proposed method finds the accurate centroid of an IT2FS; otherwise, an enhancement can be performed in the algorithm in order to minimize the error between the accurate and the calculated centroids. Moreover, only analytical formulas are used in the proposed method utilizing geometry. This eliminates the need of using discretization of an IT2FS for the type reduction process which in return naturally improves the accuracy and the computation time. The proposed method is compared with Enhanced Karnik–Mendel Iterative Procedure (EKMIP) in terms of the accuracy and the computation time on seven test fuzzy sets. The results show that the proposed method provides more accurate results with shorter computation time than EKMIP.
    International Journal of Approximate Reasoning 01/2013; 54(9):1421–1433. · 1.73 Impact Factor