• [Show abstract] [Hide abstract]
    ABSTRACT: In order to study cell electroporation in situ, polymer devices have been fabricated from poly-dimethyl siloxane with transparent indium tin oxide parallel plate electrodes in horizontal geometry. This geometry with cells located on a single focal plane at the interface of the bottom electrode allows a longer observation time in both transmitted bright-field and reflected fluorescence microscopy modes. Using propidium iodide (PI) as a marker dye, the number of electroporated cells in a typical culture volume of 10–100 μl was quantified in situ as a function of applied voltage from 10 to 90 V in a series of \({\sim}\) 2-ms pulses across 0.5-mm electrode spacing. The electric field at the interface and device current was calculated using a model that takes into account bulk screening of the transient pulse. The voltage dependence of the number of electroporated cells could be explained using a stochastic model for the electroporation kinetics, and the free energy for pore formation was found to be \(45.6\pm 0.5\) kT at room temperature. With this device, the optimum electroporation conditions can be quickly determined by monitoring the uptake of PI marker dye in situ under the application of millisecond voltage pulses. The electroporation efficiency was also quantified using an ex situ fluorescence-assisted cell sorter, and the morphology of cultured cells was evaluated after the pulsing experiment. Importantly, the efficacy of the developed device was tested independently using two cell lines (C2C12 mouse myoblast cells and yeast cells) as well as in three different electroporation buffers (phosphate buffer saline, electroporation buffer and 10 % glycerol).
    European Biophysics Journal 12/2014; 44(1-2). DOI:10.1007/s00249-014-1001-x · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Irreversible electroporation (IRE) ablation uses brief electric pulses to kill a volume of tissue without damaging the structures contraindicated for surgical resection or thermal ablation, including blood vessels and ureters. IRE offers a targeted nephron-sparing approach for treating kidney tumors, but the relevant organ-specific electrical properties and cellular susceptibility to IRE electric pulses remains to be characterized. Here, a pulse protocol of 100 electric pulses, each 100 μs long, are delivered at one pulse per second to canine kidneys at three different voltage-to-distance ratios while measuring intrapulse current six hours before humane euthanasia. Numerical models were correlated with lesions and electrical measurements to determine electrical conductivity behavior and lethal electric field threshold. Three methods for modeling tissue response to the pulses were investigated (static, linear dynamic, and asymmetrical sigmoid dynamic), where the asymmetrical sigmoid dynamic conductivity function most accurately and precisely matched lesion dimensions, with a lethal electric field threshold of 575±67 V/cm for the protocols used. The linear dynamic model also attains accurate predictions with a simpler function. These findings can aid renal IRE treatment planning under varying electrode geometries and pulse strengths. Histology showed a wholly necrotic core lesion at the highest electric fields, surrounded by a transitional perimeter of differential tissue viability dependent on renal structure.
    IEEE transactions on bio-medical engineering 09/2014; 62(2). DOI:10.1109/TBME.2014.2360374 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electroporation is a commonly used approach to rapidly introduce exogenous molecules into cells without permanent damage. Compared to classical electroporation protocols, microchip-based electroporation approaches have the advantages of high transfection efficiency and low consumption, but they also commonly rely on costly and tedious microfabrication technology. Hence, it is desirable to develop a novel, more affordable, and effective approach to facilitate cell electroporation. In this study, we utilized standard printed circuit board (PCB) technology to fabricate a chip with an interdigitated array of electrodes for electroporation of suspended cells. The electrodes (thickness ~ 35 μm) fabricated by PCB technology are much thicker than the two-dimensional (2D) planar electrodes (thickness < 1 μm) fabricated by conventional microfabrication techniques and possess a smooth corner edge. Numerical simulations showed that the three-dimensional (3D) electrodes fabricated by PCB technology can provide a more uniformly distributed electric field compared to 2D planar electrodes, which is beneficial for reducing the electrolysis of water and improving cell transfection efficiency. The chip constructed here is composed of 18 individually addressable wells for high throughput cell electroporation. HeLa, MCF7, COS7, Jurkat, and 3 T3-L1 cells were efficiently transfected with the pEGFP-N1 plasmid using individually optimal electroporation parameters. This work provides a novel method for convenient and rapid cell transfection and thus holds promise for use as a low-cost disposable device in biomedical research.
    Bioelectrochemistry 10/2014; 102. DOI:10.1016/j.bioelechem.2014.10.002 · 3.87 Impact Factor


Available from
Sep 3, 2014