Article

Algorithm 856: APPSPACK 4.0: asynchronous parallel pattern search for derivative-free optimization.

ACM Trans. Math. Softw 01/2006; 32:485-507. DOI: 10.1145/1163641.1163647
Source: DBLP

ABSTRACT APPSPACK is software for solving unconstrained and bound-constrained optimization problems. It implements an asynchronous parallel pattern search method that has been specifically designed for problems characterized by expensive function evaluations. Using APPSPACK to solve optimization problems has several advantages: No derivative information is needed; the procedure for evaluating the objective function can be executed via a separate program or script; the code can be run serially or in parallel, regardless of whether the function evaluation itself is parallel; and the software is freely available. We describe the underlying algorithm, data structures, and features of APPSPACK version 4.0, as well as how to use and customize the software.

0 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). METHODS: In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. RESULTS: Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, , performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. CONCLUSIONS: Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.
    Journal of NeuroEngineering and Rehabilitation 05/2012; 9(1):25. · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential efficacy of total body center of mass (COM) acceleration for feedback control of standing balance by functional neuromuscular stimulation (FNS) following spinal cord injury (SCI) was investigated. COM acceleration may be a viable alternative to conventional joint kinematics because of its rapid responsiveness, focal representation of COM dynamics, and ease of measurement. A computational procedure was developed using an anatomically realistic, three-dimensional, bipedal biomechanical model to determine optimal patterns of muscle excitations to produce targeted effects upon COM acceleration from erect stance. The procedure was verified with electromyographic data collected from standing nondisabled subjects undergoing systematic perturbations. Using 16 muscle groups targeted by existing implantable neuroprostheses, we generated data to train an artificial neural network (ANN)-based controller in simulation. During forward simulations, proportional feedback of COM acceleration drove the ANN to produce muscle excitation patterns countering the effects of applied perturbations. Feedback gains were optimized to minimize upper-limb (UL) loading required to stabilize against disturbances. Compared with the clinical case of maximum constant excitation, the controller reduced UL loading by 43% in resisting external perturbations and by 51% during simulated one-arm reaching. Future work includes performance assessment against expected measurement errors and development of user-specific control systems.
    The Journal of Rehabilitation Research and Development 04/2012; 49(2):279-96. · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern IC power delivery systems encompass large on-chip passive power grids and active on-chip or off-chip voltage converters and regulators. While there exists little work targeting on holistic design of such complex IC subsystems, the optimal system-level design of power delivery is critical for achieving power integrity and power efficiency. In this article, we conduct a systematic design analysis on power delivery networks that incorporate Buck Converters (BCs) and on-chip Low-Dropout voltage regulators (LDOs) for the entire chip power supply. The electrical interactions between active voltage converters, regulators as well as passive power grids and their influence on key system design specifications are analyzed comprehensively. With the derived design insights, the system-level codesign of a complete power delivery network is facilitated by a proposed automatic optimization flow in which key design parameters of buck converters and on-chip LDOs as well as on-chip decoupling capacitance are jointly optimized. The experimental results demonstrate significant performance improvements resulted from the proposed system cooptimization in terms of achievable area overhead, supply noise and power efficiency. Impacts of different decoupling capacitance technologies are also investigated.
    ACM Transactions on Design Automation of Electronic Systems (TODAES). 03/2013; 18(2).

Full-text (2 Sources)

View
31 Downloads
Available from
May 31, 2014