Article
Overcoming the Hole In The Bucket: PublicKey Cryptography Resilient to Continual Memory Leakage.
Foundations of Computer Science, 1975., 16th Annual Symposium on 01/2010; 2010:278. DOI: 10.1109/FOCS.2010.55
Source: DBLP

Conference Paper: Masking with Randomized Look Up Tables  Towards Preventing SideChannel Attacks of All Orders.
Cryptography and Security: From Theory to Applications  Essays Dedicated to JeanJacques Quisquater on the Occasion of His 65th Birthday; 01/2012  [Show abstract] [Hide abstract]
ABSTRACT: The laws of quantum mechanics allow unconditionally secure key distribution protocols. Nevertheless, security proofs of traditional quantum key distribution (QKD) protocols rely on a crucial assumption, the trustworthiness of the quantum devices used in the protocol. In deviceindependent QKD, even this last assumption is relaxed: the devices used in the protocol may have been adversarially prepared, and there is no a priori guarantee that they perform according to specification. Proving security in this setting had been a central open problem in quantum cryptography. We give the first deviceindependent proof of security of a protocol for quantum key distribution that guarantees the extraction of a linear amount of key even when the devices are subject to a constant rate of noise. Our only assumptions are that the laboratories in which each party holds his or her own device are spatially isolated, and that both devices, as well as the eavesdropper, are bound by the laws of quantum mechanics. All previous proofs of security relied either on the use of many independent pairs of devices, or on the absence of noise.Computing Research Repository  CORR. 10/2012; 
Chapter: Fully LeakageResilient Signatures
[Show abstract] [Hide abstract]
ABSTRACT: A signature scheme is fully leakage resilient (Katz and Vaikuntanathan, ASIACRYPT ’09) if it is existentially unforgeable under an adaptive chosenmessage attack even in a setting where an adversary may obtain bounded (yet arbitrary) leakage information on all intermediate values that are used throughout the lifetime of the system. This is a strong and meaningful notion of security that captures a wide range of sidechannel attacks. One of the main challenges in constructing fully leakageresilient signature schemes is dealing with leakage that may depend on the random bits used by the signing algorithm, and constructions of such schemes are known only in the randomoracle model. Moreover, even in the randomoracle model, known schemes are only resilient to leakage of less than half the length of their signing key. In this paper we construct fully leakageresilient signature schemes without random oracles. We present a scheme that is resilient to any leakage of length (1–o(1))L bits, where L is the length of the signing key. Our approach relies on generic cryptographic primitives, and at the same time admits rather efficient instantiations based on specific numbertheoretic assumptions. In addition, we show that our approach extends to the continualleakage model, recently introduced by Dodis, Haralambiev, LopezAlt and Wichs (FOCS ’10), and by Brakerski, Tauman Kalai, Katz and Vaikuntanathan (FOCS ’10). In this model the signing key is allowed to be refreshed, while its corresponding verification key remains fixed, and the amount of leakage is assumed to be bounded only in between any two successive key refreshes.05/2011: pages 89108;
Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.