• Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complexity of cryptography does not allow many people to actually understand the motivations and therefore available for practicing security cryptography. Cryptography process seeks to distribute an estimation of basic cryptographic primitives across a number of confluences in order to reduce security assumptions on individual nodes, which establish a level of fault-tolerance opposing to the node alteration. In a progressively networked and distributed communications environment, there are more and more useful situations where the ability to distribute a computation between a number of unlike network intersections is needed. The reason back to the efficiency (separate nodes perform distinct tasks), fault-tolerance (if some nodes are unavailable then others can perform the task) and security (the trust required to perform the task is shared between nodes) that order differently. Hence, this paper aims to describe and review the different research that has done toward text encryption and description in the block cipher. Moreover, this paper suggests a cryptography model in the block cipher.
    Computer Modelling and Simulation (UKSim), 2011 UkSim 13th International Conference on; 05/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, there has been introduced various types of pairing computations to implement ID based cryptosystem for mobile ad hoc network. According to spreading the applications of pairing computations, various fault attacks have been proposed. Among them, a counter fault attack has been considered the strongest threat. Thus this paper proposes a new countermeasure to prevent the counter fault attack on Miller's algorithm. The proposed method is able to reduce the possibility of fault propagation by a random index of intermediate values. Additionally, it is difficult to challenge fault attacks on the proposed method since a simple side channel leakage of 'if' branch is eliminated.
    Journal of the Institute of Electronics and Information Engineers. 07/2013; 50(7).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present a theoretical analysis of the limits of the differential fault analysis (DFA) of AES by developing an inter-relationship between conventional cryptanalysis of AES and DFAs. We show that the existing attacks have not reached these limits and present techniques to reach these. More specifically, we propose optimal DFA on states of AES-128 and AES-256. We also propose attacks on the key schedule of the three versions of AES, and demonstrate that these are some of the most efficient attacks on AES to date. Our attack on AES-128 key schedule is optimal, and the attacks on AES-192 and AES-256 key schedule are very close to optimal. Detailed experimental results have been provided for the developed attacks. The work has been compared to other works and also the optimal limits of DFA of AES.
    Journal of Cryptographic Engineering. 3(2).

Full-text (2 Sources)

Download
41 Downloads
Available from
May 31, 2014