0 Followers
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schistosoma mansoni is a blood helminth parasite that causes schistosomiasis, a disease that affects 200 million people in the world. Many orthologs of known mammalian genes have been discovered in this parasite and evidence is accumulating that some of these genes encode proteins linked to signaling pathways in the parasite that appear to be involved with growth or development, suggesting a complex co-evolutionary process. In this work we found 427 genes conserved in the Deuterostomia group that have orthologs in S. mansoni and no members in any nematodes and insects so far sequenced. Among these genes we have identified Insulin Induced Gene (INSIG), Interferon Regulatory Factor (IRF) and vasohibin orthologs, known to be involved in mammals in mevalonate metabolism, immune response and angiogenesis control, respectively. We have chosen these three genes for a more detailed characterization, which included extension of their cloned messages to obtain full-length sequences. Interestingly, SmINSIG showed a 10-fold higher expression in adult females as opposed to males, in accordance with its possible role in regulating egg production. SmIRF has a DNA binding domain, a tryptophan-rich N-terminal region and several predicted phosphorylation sites, usually important for IRF activity. Fourteen different alternatively spliced forms of the S. mansoni vasohibin (SmVASL) gene were detected that encode seven different protein isoforms including one with a complete C-terminal end, and other isoforms with shorter C-terminal portions. Using S. mansoni homologs, we have employed a parsimonious rationale to compute the total gene losses/gains in nematodes, arthropods and deuterostomes under either the Coelomata or the Ecdysozoa evolutionary hypotheses; our results show a lower losses/gains number under the latter hypothesis. The genes discussed which are conserved between S. mansoni and deuterostomes, probably have an ancient origin and were lost in Ecdysozoa, being still present in Lophotrochozoa. Given their known functions in Deuterostomia, it is possible that some of them have been co-opted to perform functions related (directly or indirectly) to host adaptation or interaction with host signaling processes.
    BMC Genomics 02/2007; 8:407. DOI:10.1186/1471-2164-8-407 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput sequencing technologies have opened up a new avenue for studying extinct organisms. Here we identify and quantify biases introduced by particular characteristics of ancient DNA samples. These analyses demonstrate the importance of closely related genomic sequence for correctly identifying and classifying bona fide endogenous DNA fragments. We show that more accurate genome divergence estimates from ancient DNA sequence can be attained using at least two outgroup genomes and appropriate filtering.
    Genome biology 05/2010; 11(5):R47. DOI:10.1186/gb-2010-11-5-r47 · 10.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Basic Local Alignment Search Tool (BLAST) algorithm remains one of the most widely used bioinformatic programs. For many projects, new sequencing technologies and increased database sizes will increase the BLAST output significantly. Frequently, this output is so large that it is no longer able to be processed manually. As BLAST users are increasingly recruited from mainstream biology without any bioinformatic background, user-friendly programs capable of BLAST output visualization, analysis and post-processing are in demand. In this review, freely available BLAST output processing programs are categorized as BLAST output interpreters, BLAST environments, BLAST output parsers or specialized tools. They are evaluated according to their user-friendliness, analysis features and high-throughput data processing capabilities.
    Briefings in Bioinformatics 04/2013; 15(4). DOI:10.1093/bib/bbt009 · 9.62 Impact Factor