Lyapunov Methods for Time-Invariant Delay Difference Inclusions.

SIAM Journal on Control and Optimization (Impact Factor: 1.38). 01/2012; 50:110-132. DOI: 10.1137/100807065
Source: DBLP

ABSTRACT Motivated by the fact that Delay Difference Inclusions (DDIs) form a rich modeling class that includes, for example, uncertain time-delay systems and certain types of networked control systems, this paper provides a comprehensive collection of Lyapunov methods for DDIs. First, the Lyapunov-Krasovskii approach, which is an extension of the classical Lyapunov theory to time-delay systems, is considered. It is shown that a DDI is Kℒ-stable if and only if it admits a Lyapunov-Krasovskii Function (LKF). Second, the Lyapunov-Razumikhin method, which is a type of small-gain approach for time-delay systems, is studied. It is proved that a DDI is Kℒ-stable if it admits a Lyapunov-Razumikhin Function (LRF). Moreover, an example of a linear delay difference equation which is globally exponentially stable but does not admit an LRF is provided. Thus, it is established that the existence of an LRF is not a necessary condition for Kℒ-stability of a DDI. Then, it is shown that the existence of an LRF is a sufficient condition for the existence of an LKF and that only under certain additional assumptions is the converse true. Furthermore, it is shown that an LRF induces a family of sets with certain contraction properties that are particular to time-delay systems. On the other hand, an LKF is shown to induce a type of contractive set similar to those induced by a classical Lyapunov function. The class of quadratic candidate functions is used to illustrate the results derived in this paper in terms of both LKFs and LRFs, respectively. Both stability analysis and stabilizing controller synthesis methods for linear DDIs are proposed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Input-to-state stability (ISS) of interconnected systems with each subsystem described by a difference equation subject to an external disturbance is considered. Furthermore, special attention is given to time delay, which gives rise to two relevant problems: (i) ISS of interconnected systems with interconnection delays, which arise in the paths connecting the subsystems, and (ii) ISS of interconnected systems with local delays, which arise in the dynamics of the subsystems. The fact that a difference equation with delay is equivalent to an interconnected system without delay is the crux of the proposed framework. Based on this fact and small-gain arguments, it is demonstrated that interconnection delays do not affect the stability of an interconnected system if a delay-independent small-gain condition holds. Furthermore, also using small-gain arguments, ISS for interconnected systems with local delays is established via the Razumikhin method as well as the Krasovskii approach. A combination of the results for interconnected systems with interconnection delays and local delays, respectively, provides a framework for ISS analysis of general interconnected systems with delay. Thus, a scalable ISS analysis method is obtained for large-scale interconnections of difference equations with delay.
    Mathematics of Control Signals and Systems 04/2012; 24. · 0.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes a novel approach to stability analysis of discrete-time nonlinear periodi-cally time-varying systems. The contributions are as follows. Firstly, a relaxation of standard Lyapunov conditions is derived. This leads to a less conservative Lyapunov function that is required to decrease at every period rather than at each time instant. Secondly, for linear periodic systems with constraints, we show that compared to standard Lyapunov theory, the novel stability concept yields a larger estimate of the region of attraction. An example illustrates the effectiveness of the developed theory.
    Automatica 10/2012; · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For the stability analysis of time-delay systems, the Razumikhin approach provides (at the cost of some conservatism) a set of conditions that are relatively easy to verify when compared to the Krasovskii approach. Unfortunately, currently, for linear delay difference inclusions (DDIs) verification of these conditions is only possible by solving a bilinear matrix inequality (BMI). To obtain a tractable stability analysis method for DDIs, an alternative set of Razumikhin-type conditions is proposed in this paper, which are based on a technique that was developed for interconnected systems in Willems (1972). In particular, via the proper selection of storage and supply functions, these conditions can be used to establish input-to-state stability (ISS) for general DDIs. When linear DDIs and quadratic functions are considered, ℓ2ℓ2-disturbance attenuation can be established by solving a single linear matrix inequality (LMI). Moreover, this LMI is shown to be less conservative than the BMI corresponding to the existing Razumikhin-type conditions for linear DDIs.
    Automatica 02/2013; 49(2):619–625. · 2.92 Impact Factor

Full-text (2 Sources)

Available from
Jul 8, 2014