Article

Topological Sensitivity Analysis for the Location of Small Cavities in Stokes Flow.

SIAM J. Control and Optimization 01/2009; 48:2871-2900. DOI: 10.1137/070704332
Source: DBLP

ABSTRACT The moulds' filling process may generate flaws consisting of small gas bubbles trapped inside the material, which weaken the solidity of the casted piece. We consider here the inverse problem of determining these small size flaws' locations from velocities boundary measurements. The fluid flow is described by a simplified model based on the Stokes system. A numerical algorithm based on the topological sensitivity analysis applied to an energy-like misfit functional is worked out to that end.

1 Bookmark
 · 
70 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article is concerned with establishing the topological sensitivity (TS) against the nucleation of small trial inclusions of an energy-like cost function. The latter measures the discrepancy between two time-harmonic elastodynamic states (respectively defined, for cases where overdetermined boundary data is available for identification purposes, in terms of Dirichlet or Neumann boundary data for the same reference solid) as the strain energy of their difference. Such cost function constitutes a particular form of error in constitutive relation and may be used for e.g. defect identification. The TS is expressed in terms of four elastodynamic fields, namely the free and adjoint solutions for Dirichlet or Neumann data. A similar result is also given for the linear acoustic scalar case. A synthetic numerical example where the TS result is used for the qualitative identification of an inclusion is presented for a simple 2D acoustic configuration.
    Comptes Rendus Mecanique - C R MEC. 01/2010; 338(7):377-389.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper is concerned with an optimal shape design problem in fluid mechanics. The fluid flow is governed by the Stokes equations. The theoretical analysis and the numerical simulation are discussed in two and three-dimensional cases. The proposed approach is based on a sensitivity analysis of a design function with respect to the insertion of a small obstacle in the fluid flow domain. An asymptotic expansion is derived for a large class of cost functions using small topological perturbation technique. A fast and accurate numerical algorithm is proposed. The efficiency of the method is illustrated by some numerical examples.
    Journal of Mathematical Analysis and Applications 01/2009; 356(2):548-563. · 1.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Bernoulli problem is rephrased into a shape optimization problem. In particular, the cost function, which turns out to be a constitutive law gap functional, is borrowed from inverse problem formulations. The shape derivative of the cost functional is explicitly determined. The gradient information is combined with the level set method in a steepest descent algorithm to solve the shape optimization problem. The efficiency of this approach is illustrated by numerical results for both interior and exterior Bernoulli problems.
    Journal of Engineering Mathematics 08/2013; 81(1). · 1.08 Impact Factor