Article
On a Vizinglike conjecture for direct product graphs.
Department of Mathematics, PEF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
Discrete Mathematics (Impact Factor: 0.58). 01/1996; 156:243246. DOI: 10.1016/0012365X(96)000325 Source: DBLP

 [Show abstract] [Hide abstract]
ABSTRACT: Let $G_1$ and $G_2$ be two undirected nontrivial graphs. The Kronecker product of $G_1$ and $G_2$ denoted by $G_1\otimes G_2$ with vertex set $V(G_1)\times V(G_2)$, two vertices $x_1x_2$ and $y_1y_2$ are adjacent if and only if $(x_1,y_1)\in E(G_1)$ and $(x_2,y_2)\in E(G_2)$. This paper presents a formula for computing the diameter of $G_1\otimes G_2$ by means of the diameters and primitive exponents of factor graphs.Mathematical Sciences Letters. 04/2013; 2(2):121127. 
Article: Lower bounds for the domination number and the total domination number of direct product graphs
[Show abstract] [Hide abstract]
ABSTRACT: A sharp lower bound for the domination number and the total domination number of the direct product of finitely many complete graphs is given: γ(×i=1tKni)≥t+1,t≥3. Sharpness is established in the case when the factors are large enough in comparison to the number of factors. The main result gives a lower bound for the domination (and the total domination) number of the direct product of two arbitrary graphs: γ(G×H)≥γ(G)+γ(H)−1γ(G×H)≥γ(G)+γ(H)−1. Infinite families of graphs that attain the bound are presented. For these graphs it also holds that γt(G×H)=γ(G)+γ(H)−1γt(G×H)=γ(G)+γ(H)−1. Some additional parallels with the total domination number are made.Discrete Mathematics 12/2010; 310(23):3310–3317. · 0.58 Impact Factor
Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.