Article

On the discovery of association rules by means of evolutionary algorithms

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (Impact Factor: 1.42). 09/2011; 1(5):397-415. DOI: 10.1002/widm.18
Source: DBLP

ABSTRACT Association rule learning is a data mining task that tries to discover interesting relations between variables in large databases. A review of association rule learning is presented that focuses on the use of evolutionary algorithms not only applied to Boolean variables but also to categorical and quantitative ones. The use of fuzzy rules in the evolutionary algorithms for association rule learning is also described. Finally, the main applications of association rule evolutionary learning covered by the specialized bibliography are reviewed. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 397–415 DOI: 10.1002/widm.18

1 Bookmark
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel method is presented for mining fuzzy association rules that have a temporal pattern. Our proposed method contributes towards discovering temporal patterns that could otherwise be lost from defining the membership functions before the mining process. The novelty of this research lies in exploring the composition of fuzzy and temporal association rules, and using a multi-objective evolutionary algorithm combined with iterative rules learning to mine many rules. Temporal patterns are augmented into a dataset to analyse the method’s ability in a controlled experiment. It is shown that the method is capable of discovering temporal patterns, and the effect of Boolean itemset support on the efficacy of discovering temporal fuzzy association rules is presented.
    International Journal of Applied Mathematics and Computer Science 12/2013; 23(4). DOI:10.2478/amcs-2013-0064 · 1.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reports on an approach that contributes towards the problem of discovering fuzzy association rules that exhibit a temporal pattern. The novel application of the 2-tuple linguistic representation identifies fuzzy association rules in a temporal context, whilst maintaining the interpretability of linguistic terms. Iterative Rule Learning (IRL) with a Genetic Algorithm (GA) simultaneously induces rules and tunes the membership functions. The discovered rules were compared with those from a traditional method of discovering fuzzy association rules and results demonstrate how the traditional method can loose information because rules occur at the intersection of membership function boundaries. New information can be mined from the proposed approach by improving upon rules discovered with the traditional method and by discovering new rules.
    Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on; 01/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Association rule mining is a well-known methodology to discover significant and apparently hidden relations among attributes in a subspace of instances from datasets. Genetic algorithms have been extensively used to find interesting association rules. However, the rule-matching task of such techniques usually requires high computational and memory requirements. The use of efficient computational techniques has become a task of the utmost importance due to the high volume of generated data nowadays. Hence, this paper aims at improving the scalability of quantitative association rule mining techniques based on genetic algorithms to handle large-scale datasets without quality loss in the results obtained. For this purpose, a new representation of the individuals, new genetic operators and a windowing-based learning scheme are proposed to achieve successfully such challenging task. Specifically, the proposed techniques are integrated into the multi-objective evolutionary algorithm named QARGA-M to assess their performances. Both the standard version and the enhanced one of QARGA-M have been tested in several datasets that present different number of attributes and instances. Furthermore, the proposed methodologies have been integrated into other existing techniques based in genetic algorithms to discover quantitative association rules. The comparative analysis performed shows significant improvements of QARGA-M and other existing genetic algorithms in terms of computational costs without losing quality in the results when the proposed techniques are applied.
    Integrated Computer Aided Engineering 02/2015; 22(1):21-39. DOI:10.3233/ICA-140479 · 4.67 Impact Factor