Detecting Distributed Network Traffic Anomaly with NetworkWide Correlation Analysis.
ABSTRACT Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation). The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a networkwide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their networkwide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.

Conference Paper: A comparison study of collaborative strategies for distributed defense against Internet worms based on smallworld modeling.
[Show abstract] [Hide abstract]
ABSTRACT: The prosperity of the Internet has made it attractive to hackers and malicious attackers. Internet worms have become one type of major threats to the network infrastructure. Distributed defense collaborating with singlepointdeployed security applications over multiple network domains are promising. However, most of the reported collaborative schemes for distributed defense are applicationspecific. There is not much research that studies the general properties of variant collaborative schemes systematically. In this paper explores properties of general collaborative defense strategies from the perspective of complex system. A threelayered network modeling platform has been developed. Taking advantage of smallworld network model, the platform consists of two network layers and one application layer. On top of it, an experimental comparison study of collaborative defense schemes has been conducted. Their performance and effectiveness facing signatureembedded worm attacks have been evaluated.The 6th International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2010, Chicago, IL, USA, 912 October 2010; 01/2010  [Show abstract] [Hide abstract]
ABSTRACT: For purposes such as endtoend monitoring, capacity planning, and performance bottleneck troubleshooting across multidomain networks, there is an increasing trend to deploy interoperable measurement frameworks such as perfSONAR. These deployments expose vast data archives of current and historic measurements, which can be queried using web services. Analysis of these measurements using effective schemes to detect and diagnose anomaly events is vital since it allows for verifying if network behavior meets expectations. In addition, it allows for proactive notification of bottlenecks that may be affecting a large number of users. In this paper, we describe our novel topologyaware scheme that can be integrated into perfSONAR deployments for detection and diagnosis of networkwide correlated anomaly events. Our scheme involves spatial and temporal analyses on combined topology and uncorrelated anomaly events information for detection of correlated anomaly events. Subsequently, a set of ‘filters’ are applied on the detected events to prioritize them based on potential severity, and to drilldown upon the events “nature” (e.g., event burstiness) and “rootlocation(s)” (e.g., edge or core location affinity). To validate our scheme, we use traceroute information and oneway delay measurements collected over 3 months between the various U.S. Department of Energy national lab network locations, published via perfSONAR web services. Further, using realworld case studies, we show how our scheme can provide helpful insights for detection, visualization and diagnosis of correlated network anomaly events, and can ultimately save time, effort, and costs spent on network management.Journal of Network and Systems Management 04/2014; 22(2). · 0.43 Impact Factor
Page 1
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 752818, 11 pages
doi:10.1155/2009/752818
Research Article
DetectingDistributed NetworkTrafficAnomaly with
NetworkWideCorrelationAnalysis
LiZonglin,HuGuangmin,YaoXingmiao,andYangDan
Key Lab of Broadband Optical Fiber Transmission and Communication Networks,
University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
Correspondence should be addressed to Li Zonglin, lizonglin@uestc.edu.cn
Received 22 October 2007; Accepted 20 August 2008
Recommended by Rocky Chang
Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by
the same source (e.g., DDoS attack, worm propagation). The anomaly transiting in a single link might be unnoticeable and
hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks.
Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a networkwide detection
method by performing anomalous correlation analysis of traffic signals’ instantaneous parameters. In our method, traffic signals’
instantaneous parameters are firstly computed, and their networkwide anomalous space is then extracted via traffic prediction.
Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces
demonstrates the excellent performance of this approach for distributed traffic anomaly detection.
Copyright © 2009 Li Zonglin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1.Introduction
Network traffic anomalyis referred to asa situation suchthat
traffic deviates from its normal behavior, while distributed
network traffic anomaly is a traffic abnormal behavior
involving multiple links of a network and caused by the same
source. There are many reasons that can cause distributed
network traffic anomaly, such as DDoS attack, flash crowd,
sudden shifts in traffic, worm propagation, network failure,
network outages, and so forth. Any of these anomalies will
seriously impact the performance of network.
Usually, there are not any obvious features of anomalies
in individual links for distributed network traffic anomaly,
that is, compared with background traffic of backbone
network, even its normal changes, anomalous traffic may
be unnoticeable so that detection based on information
collected from single link is very difficult. However, the
sum of anomalous traffic on many links can be prevailing.
If we put multitraffic singles together and apply network
wide anomaly detection to them, the relationship between
traffic would help to reveal anomaly. Principle component
analysis (PCA) is an existing statisticalanalysis technique;
Lakhina et al. [1, 2] applied it as a networkwide detection
method to the field of traffic anomaly detection. It follows
that decomposing overall traffic into two disjoint parts based
on correlation across links or origindestination (OD) flows,
respectively, corresponds to normal space and anomalous
space.Trafficwithlesscorrelationisconsideredasanomalous
space, the energy of anomalous space; is then compared with
a threshold to diagnosis anomaly.
The distributed traffic anomalies caused by the same
source usually have some similar features in time or
frequency domain. These similarities contribute to strong
correlation between anomalous flows. Since PCAbased
methods deal with the anomalous space that lacks correla
tion, they are prone to suffer from false negative. Although
the volume of individual anomaly is small, anomalous
flows in many links exhibit inherent correlations. This fact
should be useful for detection. Drawing on the change of
correlation between networkwide anomalous space lends
itself to bypass the limitation of PCAbased methods. In
this paper, we propose a method to detect distributed
traffic anomaly with networkwide correlation analysis of
instantaneous parameters. First traffic signals’ instantaneous
Page 2
2EURASIP Journal on Advances in Signal Processing
parameters are computed; and their networkwide anoma
lous space is then extracted via traffic prediction; finally,
global correlation coefficient as a measure of the correlation
between anomalous space is calculated to reveal anomaly.
The contributions of this paper are as follows.
(i) We perform detection on instantaneous amplitude
and instantaneous frequency of traffic signal, which
can reveal anomalies by its characteristics of time
and frequency domain. To improve computation
speed of instantaneous parameters, we propose a fast
algorithm of instantaneous parameters computation
for anomaly detection.
(ii) We divide anomalous space by means of comparing
theactualinstantaneousparametersofODflowswith
thepredictionstoovercomelimitationofPCAinfail
ing to detect the anomalies with strong correlations.
(iii) Targeting at the characteristics of distributed traffic
anomaly, we deploy detection by correlation analysis
of amplitude and frequency between anomalous
space, rather than volume, which can detect small
anomaly in single link.
2.RelatedWork
Network traffic anomaly detection method can be classified
into single node and multinodes detection by traffic number
being analyzed. Based on whether to take into account
the relationship between traffic, multinodes detection can
be further differentiated between distributed detection and
networkwide detection.
Distributed detection [3–10] is to select some nodes
in the network to construct subdetection networks. First,
each node deploys simple and fast local detection by self
collected information; second, exchange detecting results of
each node through a certain communication mechanism;
then, synthesize the results of partial or all nodes to
determine whether anomaly occurs. Some related systems
or architecture have been reported, for instance, distributed
attack detection system (DAD) [4, 5], Cooperative Intrusion
Traceback and Response Architecture (CITRA) [6, 7], and so
on. In addition, some try to deploy local detection by fre
quency domain analysis, as shown in [11]. This collaborative
distributed detection, that determines anomaly by detection
results on many nodes, overcomes the limit of detecting
only by one single node and increases detection accuracy
effectively. However, its final detection result still depends on
localresultofeachnodetoagreatextent,whereasdistributed
network anomaly does not present obvious feature on single
node, which makes it hard to detect one of them.
Being different from the former distributed detection
which tends to detect at different position independently,
networkwide detection is a method that analyzes all traffic
signals together and exposes anomaly through relationship
between traffic. Diagnosis anomaly in networkwide per
spective was firstly reported in the works of Lakhina et al.
[1, 2]; they perform PCA to analyze the relationship between
volumeofalllinksorODflows,inordertodivideanomalous
part from traffic. In 2005, Lakhina et al. [12] proposed an
anomaly detection method by applying PCA to the feature
distribution of networkwide traffic, and a DDoS attack
detection method using multiway PCA [13]. Li et al. [14]
introduced a method combining traffic sketch and subspace
for networkwide anomaly detection. Yuan and Mills [15]
defined a weight vector and discovered congestion on many
links by crosscorrelation analysis. Huang et al. [16] detected
network disruption via performing PCA to networkwide
routing updates data.
Most of existing networkwide detection methods are
based on PCA. The main advantage of these methods is
the use of the relationship among overall traffic, and can
detectsomeanomalieseffectively,especiallyabruptchangeof
traffic at local point. The basic idea of PCA is to treat traffic
which are highly correlated as normal space and only analyze
the remaining anomaly space. However, distributed traffic
anomaliescausedbythesamesourcepossesshighcorrelation
with each other, and they are prone to be divided into
normal space by PCA. Therefore, PCAbased method may
suffer from false negative in detecting distributed network
traffic anomaly. Furthermore, these methods still determine
anomaly only by the value of traffic volume, which leads
to the difficulties in detecting relatively small distributed
anomalous traffic from normal ones. In this paper, we
divide anomalous space by comparing predictions of traffic
instantaneous parameters with real value, and make use of
thevariationdegreeofcorrelationbetweenanomalousspace,
rather than volume, to infer anomaly.
Signal process technique has been widely used in traffic
anomaly detection for single node. Cheng et al. [17] found
that the PSD of normal TCP flows exhibit periodicity while
the PSD of DoS attack flow is not. Hussain et al. [18] utilized
the difference of PSD in lower frequency band to classify
the attacks as single or multisource. Chen and Hwang [11]
compared the PSD of normal traffic with attack in lower
frequencybandwiththeaimofperiodicpulsingDDoSattack
detection. The PSD of signal illustrates the proportion of
everyfrequencycomponent as a whole,however it lacks local
information, and cannot be more specific about the time
each frequency component is involved in, while it is more
important to nonstationary traffic signals whose frequency
components are time varying. The instantaneous parameters
can provide information about amplitude and frequency
of nonstationary signal in every time point and how they
change with time. Wang et al. [19] used HilbertHuang
transform [20] to acquire the instantaneous frequency of
traffic as an outline of normal behavior for single link. In
this paper, we use both instantaneous parameters of OD
flow, namely, instantaneous frequency and instantaneous
amplitude, and divide anomalous space for each of them.
The main difference between our method and [19] is
that, first, the method proposed by [19] is used for single
node detection, it attempted to find anomaly based on obvi
ous change of traffic instantaneous frequency, however the
variation of instantaneous frequency caused by distributed
anomaly traffic on individual link is potentially small, the
detection method would be hampered by this fact. Whereas,
we analyze networkwide OD flows, and use the change of
Page 3
EURASIP Journal on Advances in Signal Processing3
correlation caused by the effect of alteration simultaneously
across multiple traffic data, to circumvent the difficulty
caused by individual anomaly with small variation in instan
taneous frequency. Second, the analysis in [19] was only
for traffic instantaneous frequency. Since anomalous traffic
may cause different impact on instantaneous frequency
and instantaneous amplitude of background traffic, there
might exist false negative in detection from instantaneous
frequency or amplitude solely. Instead, we use instantaneous
amplitude as well as instantaneous frequency so as to achieve
a better detection performance.
3.DistributedNetwork Traffic
AnomaliesDetection
Distributed network traffic anomalies caused by the same
source usually have some similar features. For instance, the
anomalies arose by same attack event, commonly generated
by specific tools, might possess some similarities in their
start time, lasting time, interval time, type and frequency
characteristic, and so forth; likewise, the alternative dis
tributed traffic anomalies caused by nonattack reasons, like
outages, might result in the flows that traverse the location of
anomalous event change simultaneously. These similarities
both in time and frequency domain contribute to the strong
correlation between anomalous flows.
The previous anomaly detection methods usually make
use of the difference between individual anomaly and the
normal pattern to derive judgment. However, they generally
fail to detect the anomalies on individual links which are
relatively small. The alteration of single anomalous flow
is unnoted, while the variational tendency of multiple
anomalous flows in time or frequency domain is easy to
be captured, and by means of this collectively variational
tendency, can conquer the difficulties resulting from small
single anomaly. Therefore, the concept of correlation can
be used to characterize the relationship between multiflows
when they change simultaneously.
As the correlation of anomalous flows is not only
exhibited in time domain, but also reflected in frequency
domain,itisadvantageoustoconsidermorekindsoffeatures
of anomalous flows both in time and frequency domains for
correlation analysis to reveal anomaly. Instantaneous param
eters (i.e., both instantaneous amplitude and instantaneous
frequency) are physical parameters, which capture transient
characteristic of signal, and characterize it in different ways.
In this sense, we perform correlation analysis on the two
instantaneous parameters of anomalous flows to identify
anomalies more extensively.
Besides the correlation of distributed anomalous flows,
there still exists correlation between normal traffic, such as
the similar diurnal and weekly pattern. Accordingly before
we perform correlation analysis on anomalies, it is necessary
to eliminate the influence of correlation between normal
trafficstoavoidtheimpactondetectionresult,itisequivalent
to extract anomalous space from the whole traffic signal.
The detection steps are depicted in Figure 1. Firstly, we
compute instantaneous parameters of every OD flows to get
Traffic
signal
Instantaneous
parameters
computation
Anomalous
space
extraction
Networkwide
correlation
analysis
Figure 1: Distributed network traffic anomaly detection steps.
their instantaneous amplitude and frequency; then model
theinstantaneousparameterswithcorrespondingtimeseries
models, the difference between actual data and predictions
is used to approximate the anomalous space which includes
abnormal flows; finally, networkwide correlation analysis is
performed on the anomalous space and detect distributed
traffic anomaly by the variation degree of correlation. The
computation of instantaneous parameters, extraction of
anomalous space, and networkwide correlation analysis will
be elaborated, respectively, in Sections 4, 5, 6.
4.InstantaneousParametersand
FastAlgorithm
4.1.InstantaneousParameters. Trafficsignalisnonstationary,
it varies with time, so does its frequency content. The instant
characteristicofnonstationarysignalisgenerallycapturedby
instantaneous parameters (including instantaneous ampli
tude (IA), instantaneous frequency (IF)), which decompose
the information of amplitude and frequency, and do not
change the nature of signal, but rather to set up reflections
of different aspects. Instantaneous parameters tend to reveal
some characteristics of signal that are covered by usual time
description. The definitions of instantaneous parameters are
as follow: for any continue time signal X(t), we can get its
Hilbert transformation: Y(t) = (1/π)?+∞
then resolve signal Z(t) is obtained by Z(t) = X(t)+ iY(t) =
a(t)ejθ(t), where θ(t) = arctan(Y(t)/X(t)) is the phases
function of Z(t). The instantaneous amplitude of Z(t) is
computed by:
−∞X(τ)/(t − τ)dτ,
a(t) =?X(t)2+Y(t)2?1/2.
(1)
Instantaneous frequency ω(t) is denoted as
ω(t) =dθ(t)
dt
.
(2)
4.2. Fast Algorithm for Instantaneous Parameters Computa
tion. Anomaly detection is usually required to be processed
online.Incomputationofinstantaneousparameters,awhole
traffic series is needed for convolution, however it cannot
meet the need of realtime operation. Accordingly, a sliding
window can be used in practical calculation, to move along
the traffic and intercept data from it. While the window is
sliding, the two data sets, intercepted, respectively, before
and after window moves, always have a same part, and
there would be a lot of redundant results if we compute
the same part twice. So it is convenient to store this part
of instantaneous parameters in advance, and only compute
the new data intercepted by the window to avoid repeating
calculation and improve the detection speed.
Page 4
4EURASIP Journal on Advances in Signal Processing
(1) (2) (3)
(4)(5)
t
S2:
S1:
Figure2:Fastalgorithmofinstantaneousparameterscomputation.
LetS1bethetrafficdatasetinterceptedbyslidingwindow
at certain time, and the length of window is N, the kernel
of the Hilbert transform 1/(πt), which can be considered as
a filter with the length of 2L, then the Hilbert transform of
S1(k) can be written as
HS1(k) =
L?
i=−L
S1(k)
(k − i)π,
k = 0,1,...,N.
(3)
When k − i < 0, namely 0 ≤ k ≤ L, the data of Skin this
section are out of range and demand process separately, this
section is at the beginning of the signal. When k − i > N,
namely k − i > N, the data in this section are out of range
and demand process separately, this section is at the end of
the signal. When L ≤ k ≤ N − L, the data in this section do
the normal convolution.
As moving along the traffic data, the sliding window
samples the data to get another signal S2every time lapse of
ΔT, as depicted in Figure 2, it is composed as follows:
⎧
⎪⎩
The data of S1in the section L+ΔN ≤ k ≤ N −L are the
same as the data of S2in the section L ≤ k ≤ N − L − ΔN,
so the instantaneous parameters IP1(k) and IP2(k) of this
part are the same, as represented in Figure 2(2). The number
of the same points is M = N − 2L − ΔN. Therefore, as
long as N > L, we only need to compute the instantaneous
parameters of S2in the section of k ∈ [0,L] ∪ [N − (L +
ΔN),N].
Thefastcalculationofinstantaneousparametersincludes
4 steps.
S2(K) =
⎪⎨
S1(k −ΔN),
new input data,
0 ≤ k ≤ (N −ΔN),
(N −ΔN) < k ≤ N.
(4)
(i) Compute the instantaneous parameters IP1(k) of
signalS1,andstorek ∈ [L,N−L−ΔN]partofIP1(k)
to be the section of IP2(k) for k ∈ [L,N − L − ΔN],
which is represented in Figure 2(2).
(ii) According to the principle of data periodic repetition
which deals with data beyond the boundary, we pick
up the part of k ∈ [N −L,N] from S2, and convolute
with filter to get the section of IP2(k) for k ∈ [0,L),
as it shown in Figure 2(4).
(iii) Pick up the part of k ∈ [0,L] from S2, and convolute
with filter to get the section of IP2(k) for k ∈ (N −
(L+ΔN),N), as it shown in Figure 2(5).
(iv) Synthesizingthreestepsmentionedbefore,wecanget
the whole instantaneous parameters IP2(k) of S2.
The fast algorithm of instantaneous parameters based on
sliding window technology adds an array with the length of
0
2
4
6
8
×107
Traffic
05001000 1500 2000
Time (5 minutes)
(a) Addingoneanomaly inno.26ODflow (betweenverticaldashlines)
0
5
10
×107
Traffic
05001000 15002000
Time (5 minutes)
(b) No.50 OD flow unstained
Figure 3: Anomaly in a single flow.
0
2
4
6
8
×107
Traffic
0500100015002000
Time (5 minutes)
(a) Addingoneanomaly inno.26ODflow (betweenverticaldashlines)
0
5
10
×107
Traffic
050010001500 2000
Time (5 minutes)
(b) Adding one anomaly in no.50 OD flow (between vertical dash lines)
Figure 4: Two anomalies in two flows.
M (M = N − 2L − ΔN), to record the same part between
IP1(k) and IP2(k), by comparison with normal computation.
When calculating IP2(k), the same part with IP1(k) can be
transferred directly to the result to improve the computation
speed of instantaneous parameters.
Page 5
EURASIP Journal on Advances in Signal Processing5
0
1
2
3
×1014
Residual vector
0500 100015002000
Time (5 minutes)
Figure 5: PCA for one anomalies in two flows.
0
1
2
3
×1014
Residual vector
05001000 15002000
Time (5 minutes)
Figure 6: PCA for two anomalies in two flows.
5.Anomalous Space Extraction
The extraction of anomalous space from traffic signal is
implemented via getting rid of normal traffic behavior. Most
ofnetworkwideanomalytrafficdetectionmethodsarePCA
based method, they draw on PCA to divide traffic into
normal and abnormal space, the normal part is determined
while they have strong temporal trend among links or OD
flows.Itperformswellindetectingabruptchangeinthelocal
of single traffic, but may be limited to the case of distributed
traffic anomaly, for the anomalies with strong correlation are
possibly divided into normal space. We will illustrate it by
changing the number of anomalous flows.
Figure 3 is the traffic of no. 26, 50 OD flows of Abilene
network (more detail in Section 7.1) in the 3rd week. In
Figure 3(a), we inject one anomaly to 26 OD flow with five
times of the mean of it, from 1000 to 1004 sample point,
which corresponds to the spike and can be easily visually
isolated. 50th OD flow is unstained. The anomalous space
derived by PCA is depicted in Figure 5, and the abrupt
change of 26th OD flow is correctly partitioned. In the same
way, we inject another anomaly with 5 times of its mean
and the same lasting time on 50th OD flow, as shown in
Figure 4(b). There are similarities between two anomalies in
the beginning, lasting time, and the change of volume. The
outcome of PCA for the two anomalies is shown in Figure 6.
It shows that the anomalies nearby the 1000th sample point
are not divided into the anomalous space, instead they are
considered as the normal due to the strong correlation.
Therefore, PCA method cannot separate anomalous space
for distributed traffic anomaly with strong correlation.
Observing from normal OD flows, traffic usually consists
of normal part and the part representing some random fac
tors,whichmightbetheresultofaccidentalbehaviorofusers
when there exists no anomaly. Owing to the similar daily and
weekly pattern of traffic, the normal part must have some
correlation, if the behavior of normal traffic is separated, the
residual of different OD flows should not have correlation,
which means that the residual traffic are independent of
each other. While anomaly occurs, anomalous flows are of
strong correlation. For this reason, the correlation of normal
traffic is necessary to be restrained. ARIMA (p,d,q) (Auto
Regressive Integrated Moving Average) model [21, 22] are
adopted to forecast the instantaneous parameters of OD
flows, the prediction results as an estimation of normal
pattern are subtracted by actual data so as to divide normal
behavior, and the residual that represents the anomalous
space is needed for the next correlation analysis.
Duetothestrongcorrelationoftwoinjectedanomaliesin
timedomain,asshowninFigure 4,weextracttheanomalous
space of instantaneous amplitude through our method,
the result is shown in Figures Figure 7(a) and Figure 7(b),
the similar changing tendency features of anomalies in
instantaneous amplitude are captured accurately. This sim
ilar characteristic will contribute to strong correlation of
anomalies, it will be introduced in the Section 6.
6.NetworkWideCorrelationAnalysis
6.1. NetworkWide Correlation Analysis for Anomalous Space
of OD Flows. The correlation of anomalous space from two
different OD flows in time or frequency domain can be
measured by correlation coefficient in statistical, which is
defined as follows.
Let X and Y stand for two random variables, the
covariance of X and Y is Cov(X,Y) = E{[X − E(X)][Y −
E(Y)]}, where D(X) and D(Y) are the variance of X and
Y, respectively. The correlation coefficient of X and Y is
computed by
ρxy=
Cov(X,Y)
?D(X)D(Y).
(5)
The correlation coefficient is a measure of the linear
relationship between two variables. The absolute value of ρxy
varies between 0 and 1, with 1 indicating a perfect linear
relationship, and ρxy= 0 indicating no relationship.
Due to the path and delay in the network, the distributed
anomalous flows may not rise in the same time, thereby it
is not wise to consider the correlation of two anomalous
space only in the same period. Two sliding windows are
introduced to calculate the correlation coefficient between
two neighborhood periods.
AsshowninFigure 8,OiandOjaretheanomalousspaces
extracted from two different OD flows. Window w1 starts at
time t, intercepting the data of Oiwith length of w1, as one
of the vector. For the other anomalous space Oj, the window
with start point varies between (t −w2,t+w2), intercept the
same length of data to be another vector. Every time the start
point of window on Ojmoves, a correlation coefficient can