Achievable ADC Performance by Postcorrection Utilizing Dynamic Modeling of the Integral Nonlinearity.

Journal on Advances in Signal Processing (Impact Factor: 0.81). 01/2008; 2008. DOI: 10.1155/2008/497187
Source: DBLP

ABSTRACT There is a need for a universal dynamic model of analog-to-digital converters (ADC's) aimed for postcorrection. However, it is complicated to fully describe the properties of an ADC by a single model. An alternative is to split up the ADC model in different components, where each component has unique properties. In this paper, a model based on three components is used, and a performance analysis for each component is presented. Each component can be postcorrected individually and by the method that best suits the application. The purpose of postcorrection of an ADC is to improve the performance. Hence, for each component, expressions for the potential improvement have been developed. The measures of performance are total harmonic distortion (THD) and signal to noise and distortion (SINAD), and to some extent spurious-free dynamic range (SFDR).

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ab st ra c t-The performance of current devices is mostly limited by the analogue front-end and analogue-to-digital converter's (ADC) imperfections. ADC performance is not, as commonly known, ideal. One of the most important parameters is the nonlinearity, which if it is known, can be corrected in the output data. The performance of three different approximations of ADC nonlinearity (common polynomials, Chebyshev polynomials and Fourier series) and achieved results concerning accuracy of approximations, noise sensitivity and nonlinearity correction are presented in the paper.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The semiconductor industry tends to constantly increase the performances of developed systems with an ever-shorter time-to-market. In this context, the conventional strategy for mixed-signal component design, which is based only on analog design effort, will no longer be suitable. In this paper, a digital correction technique is presented for analog-to-digital converters (ADCs). The idea is to use a lookup table (LUT) for the online correction of integral nonlinearity (INL). The main challenge for this kind of technique is the cost in time and resources to estimate the actual INL of the ADC needed to load the LUT. In this paper, we propose to extract INL with a very rapid procedure based on spectral analysis. We validate our technique on a 12-bit folding-and-interpolating ADC and we demonstrate that the correction is efficient for a large range of application fields.
    IEEE Transactions on Instrumentation and Measurement 04/2011; · 1.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Integral nonlinearity (INL) is used for the postcorrection of pipeline analog-digital converters (ADCs). An input-frequency-dependent INL model is developed for the compensation. The model consists of a static term that is dependent on the ADC output code, and a dynamic term that has an additional dependence on the input signal frequency. The INL model is subtracted from the digital output for postcorrection. The static compensation is implemented with a look-up-table. The dynamic calibration is performed by a bank of frequency domain filters using an overlap-add structure. Two ADCs of the same type (Analog Devices AD9430) are compensated for in the first three Nyquist bands. The performance improvements in terms of spurious-free dynamic range and intermodulation distortion are investigated. Using the proposed method, improvements up to 17 dB are reported in favorable scenarios.
    IEEE Transactions on Instrumentation and Measurement 01/2013; 62(7):1882-1891. · 1.71 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014