Article

On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance.

Earth Resources Technology Inc, Jessup, MD
IEEE Transactions on Geoscience and Remote Sensing (Impact Factor: 2.93). 08/2006; 44:2207-2218. DOI: 10.1109/TGRS.2006.872081
Source: DBLP

ABSTRACT The 16-day revisit cycle of Landsat has long limited its use for studying global biophysical processes, which evolve rapidly during the growing season. In cloudy areas of the Earth, the problem is compounded, and researchers are fortunate to get two to three clear images per year. At the same time, the coarse resolution of sensors such as the Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer (MODIS) limits the sensors' ability to quantify biophysical processes in heterogeneous landscapes. In this paper, the authors present a new spatial and temporal adaptive reflectance fusion model (STARFM) algorithm to blend Landsat and MODIS surface reflectance. Using this approach, high-frequency temporal information from MODIS and high-resolution spatial information from Landsat can be blended for applications that require high resolution in both time and space. The MODIS daily 500-m surface reflectance and the 16-day repeat cycle Landsat Enhanced Thematic Mapper Plus (ETM+) 30-m surface reflectance are used to produce a synthetic "daily" surface reflectance product at ETM+ spatial resolution. The authors present results both with simulated (model) data and actual Landsat/MODIS acquisitions. In general, the STARFM accurately predicts surface reflectance at an effective resolution close to that of the ETM+. However, the performance depends on the characteristic patch size of the landscape and degrades somewhat when used on extremely heterogeneous fine-grained landscapes

6 Bookmarks
 · 
423 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODIS land surface products robust and reliable. The long-term 30-m Landsat data provide spatial detailed information for characterizing human-scale processes and have been used for land cover and land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN database. A rule-based piecewise regression GSN model based on MODIS and Landsat data was developed. Results show a strong correlation between predicted GSN and actual GSN (r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale ecological features. This multiple sensor study retains the detailed seasonal dynamic information captured by MODIS and leverages the high-resolution information from Landsat, which will be useful for regional ecosystem studies.
    Remote Sensing 03/2015; 7(4):3489-3506. · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this paper was to evaluate the accuracy of two advanced blending algorithms, Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) to downscale Moderate Resolution Imaging Spectroradiometer (MODIS) indices to the spatial resolution of Landsat. We tested two approaches: (i) " Index-then-Blend " (IB); and (ii) " Blend-then-Index " (BI) when simulating nine indices, which are widely used for vegetation studies, environmental moisture assessment and standing water identification. Landsat-like indices, generated using both IB and BI, were simulated on 45 dates in total from three sites. The outputs were then compared with indices calculated from observed Landsat data and pixel-to-pixel accuracy of each simulation was assessed by calculating the: (i) bias; (ii) R 2 ; and (iii) Root Mean Square Deviation (RMSD). The IB approach produced higher accuracies than the BI approach for both blending algorithms for OPEN ACCESS Remote Sens. 2014, 6 9214 all nine indices at all three sites. We also found that the relative performance of the STARFM and ESTARFM algorithms depended on the spatial and temporal variances of the Landsat-MODIS input indices. Our study suggests that the IB approach should be implemented for blending of environmental indices, as it was: (i) less computationally expensive due to blending single indices rather than multiple bands; (ii) more accurate due to less error propagation; and (iii) less sensitive to the choice of algorithm.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODIS land surface products robust and reliable. The long-term 30-m Landsat data provide spatial detailed information for characterizing human-scale processes and have been used for land cover and land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN database. A rule-based piecewise regression GSN model based on MODIS and Landsat data was developed. Results show a strong correlation between predicted GSN and actual GSN (r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale ecological features. This multiple sensor study retains the detailed seasonal dynamic information captured by MODIS and leverages the high-resolution information from Landsat, which will be useful for regional ecosystem studies.
    Remote Sensing 03/2015; 7(4):3489-3506. DOI:10.3390/rs70403489 · 2.62 Impact Factor

Full-text

Download
47 Downloads
Available from
Jan 31, 2015