Article

Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure.

Biochemical Journal (Impact Factor: 4.65). 01/2012;

ABSTRACT Parkinson's disease is an age-related movement disorder characterized by the presence in the mid-brain of amyloid deposits of the 140-aa protein alpha-synuclein (AS). AS fibrillation follows a nucleation polymerization pathway involving diverse transient prefibrillar species varying in size and morphology. Like for other neurodegenerative diseases, cytotoxicity is currently attributed to these prefibrillar species rather than to the insoluble aggregates. Nevertheless, the underlying molecular mechanisms responsible for cytotoxicity remain elusive and structural studies may contribute to the understanding of both amyloid aggregation mechanism and oligomer-induced toxicity. It is already recognized that soluble oligomeric AS species adopt beta-sheet structures that differ from those characterizing the fibrillar structure. In the present work we used ATR-FTIR spectroscopy, a technique especially sensitive to beta-sheet structure, to get deeper insight into the beta-sheet organization within oligomers and fibrils. Careful spectral analysis revealed that AS oligomers adopt an antiparallel beta-sheet structure whereas fibrils, a parallel arrangement. The data are discussed in terms of regions of the protein involved in the early beta-sheet interactions and the implications of such conformational arrangement for the pathogenicity associated to AS oligomers.

0 Bookmarks
 · 
191 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medicinal chemistry is intimately connected with basic science such as organic synthesis, chemical biology and biophysical chemistry among other disciplines. The reason of such connections is due to the power of organic synthesis to provide designed molecules; chemical biology to give tools to discover biological and/or pathological pathways and biophysical chemistry which provides the techniques to characterize and the theoretical background to understand molecular behaviour. The present review provides some selective examples of these research areas. Initially, template dsDNA organic synthesis and the spatio-temporal control of transcription are presenting following by the supramolecular entities used in drug delivery, such as liposomes and liquid crystal among others. Finally, peptides and protein self-assembly is connected with biomaterials and as an important event in the balance between health and disease. The final aim of the present review is to show the power of chemical tools not only for the synthesis of new molecules but also to improve our understanding of recognition and self-assembly in the biological context.
    Current topics in medicinal chemistry 01/2014; · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by the loss of neurons in the substantia nigra pars compacta and the presence of Lewy bodies in surviving neurons. These intracellular protein inclusions are primarily composed of misfolded α-synuclein (aSyn), which has also been genetically linked to familial and sporadic forms of PD. DJ-1 is a small ubiquitously expressed protein implicated in several pathways associated with PD pathogenesis. Although mutations in the gene encoding DJ-1 lead to familial early-onset PD, the exact mechanisms responsible for its role in PD pathogenesis are still elusive. Previous work has found that DJ-1 - which has protein chaperone-like activity - modulates aSyn aggregation. Here, we investigated possible physical interactions between aSyn and DJ-1 and any consequent functional and pathological relevance. We found that DJ-1 interacts directly with aSyn monomers and oligomers in vitro, and that this also occurs in living cells. Notably, several PD-causing mutations in DJ-1 constrain this interaction. In addition, we found that overexpression of DJ-1 reduces aSyn dimerization, whereas mutant forms of DJ-1 impair this process. Finally, we found that human DJ-1 as well as yeast orthologs of DJ-1 reversed aSyn-dependent cellular toxicity in Saccharomyces cerevisiae. Taken together, these data suggest that direct interactions between DJ-1 and aSyn constitute the basis for a neuroprotective mechanism and that familial mutations in DJ-1 may contribute to PD by disrupting these interactions.
    Cell Death & Disease 01/2014; 5:e1350. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In general, proteins can only execute their various biological functions when they are appropriately folded. Their amino acid sequence encodes the relevant information required for correct three-dimensional folding, with or without the assistance of chaperones. The challenge associated with understanding protein folding is currently one of the most important aspects of the biological sciences. Misfolded protein intermediates form large polymers of unwanted aggregates and are involved in the pathogenesis of many human diseases, including Alzheimer’s disease (AD) and Type 2 diabetes mellitus (T2DM). AD is one of the most prevalent neurological disorders and has worldwide impact; whereas T2DM is considered a metabolic disease that detrementally influences numerous organs, afflicts some 8% of the adult population, and shares many risk factors with AD. Research data indicates that there is a widespread conformational change in the proteins involved in AD and T2DM that form β-sheet like motifs. Although conformation of these β-sheets is common to many functional proteins, the transition from α-helix to β-sheet is a typical characteristic of amyloid deposits. Any abnormality in this transition results in protein aggregation and generation of insoluble fibrils. The abnormal and toxic proteins can interact with other native proteins and consequently catalyze their transition into the toxic state. Both AD and T2DM are prevalent in the aged population. AD is characterized by the accumulation of amyloid-β (Aβ) in brain, while T2DM is characterized by the deposition of islet amyloid polypeptide (IAPP, also known as amylin) within beta-cells of the pancreas. T2DM increases pathological angiogenesis and immature vascularisation. This also leads to chronic cerebral hypoperfusion, which results in dysfunction and degeneration of neuroglial cells. With an abundance of common mechanisms underpinning both disorders, a significant question that can be posed is whether T2DM leads to AD in aged individuals and the associations between other protein misfolding diseases.
    CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders) 09/2014; 13(7). · 3.77 Impact Factor

Full-text

Download
69 Downloads
Available from
May 23, 2014