Article

Catecholamine release from bovine adrenal medulla in response to maintained depolarization.

The Journal of Physiology (Impact Factor: 4.54). 01/1976; 253(2):593-620. DOI: 10.1113/jphysiol.1975.sp011209
Source: PubMed

ABSTRACT Prolonged exposure of venous-perfused bovine adrenal glands to high K in the presence of external Ca produces a transient increase in catecholamine output that reaches a maximum after about 1 min and then declines with a half-time of about 1-2 min. 2. The time course of the transient secretory response to high K does not depend appreciably on the total catecholamine output which indicates that depletion of releasable catecholamine is unlikely to be responsible for the transient nature of the response. 3. Application of 3-6 mM-Ba stimulates secretion from a gland after many minutes exposure to high K, when catecholamine output has declined close to resting levels. This provides further evidence that depletion does not play a major role in the transient response and shows that maintained depolarization does not inhibit the secretory mechanism. 4. Exposure to high K solutions in which Ca has been replaced isomotically by Mg does not evoke any catecholamine output. Subsequent application of Ca always elicits some secretion although the size of this response to added Ca declines rapidly during exposure to Ca-free, high K solutions. The failure of the secretory response in these experiments is more rapid, and earlier in onset than the declining phase of the normal secretory response evoked in the presence of calcium. 5. Pre-treatment with Ca-free solutions of intermediate K content reduces the response to subsequent simultaneous application of high K and Ca. There is a roughly sigmoidal relation between the reduction in response and the logarithm of the K concentration used for pre-treatment. 6. Thin slices of bovine adrenal medulla show qualitatively similar responses on exposure to high K. Examination of the flourescent signal from slices dyed with the potential-sensitive dye DiS-C(3)-(5) suggests that maintained exposure to high K produces a stable depolarization. 7. The most likely explanation for these results is that K-depolarization first activates and subsequently inactivates a potential-sensitive Ca permeability channel. This inactivation is time and possibly potential dependent. 8. The effect of high K on calcium movements in medullary slices was examined. Exposure to 72 mM-K increases (45)Ca uptake, the increase being greatest during the first 10 min. The efflux of Ca is also increased on exposure to high K in the presence of Ca. The net Ca uptake in 72 mM-K is smaller than the tracer uptake of Ca. These findings indicate that K depolarization stimulates a Ca-Ca exchange process. They are also consistent with, but do not offer strong positive support for, the idea that K-depolarization first activates and subsequently inactivates Ca entry. 9. It is suggested that Ca inactivation might play a role in the modulation of neurosecretion and neurotransmitter release by changes in membrane potential.

0 Followers
 · 
51 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY 1. A technique is described for continuous measurement, with ion- selective microelectrodes, of K+and Na+ activity in the blood of a free-walking cockroach Leucophaea maderae(Fab.). Measurements can be made for periods of up to 96 h. 2. In LD 16:8, there is a marked and consistent pattern in the diel variation of K+ activity, with minima 1 h before dusk and 2 h after dawn. The mean diel range in K+ activity covers a drop of 67 % below the maximum daily value. The maximum range in K+ activity for an individual cockroach in 24 h was from 4-5 to 25-0 mM-K+.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of neuronal activity in the determination of transmitter function was studied in cultures of dissociated sympathetic neurons from newborn rat superior cervical ganglia. Cholinergic and adrenergic differentiation were assayed by incubating the cultures with radioactive choline and tyrosine and determining the rate of synthesis and accumulation of labelled acetylcholine and catecholamines. As in previous studies, pure neuronal cultures grown in control medium displayed much lower ratios of acetylcholine synthesis to catecholamine synthesis than did sister cultures grown in medium previously conditioned by incubation on appropriate nonneuronal cells (conditioned medium). However, here we report that neurons treated with the depolarizing agents elevated K(+) or veratridine, or stimulated directly with electrical current, either before or during application of conditioned medium, displayed up to 300-fold lower acetylcholine/catecholamine ratios than they would have without depolarization, and thus remained primarily adrenergic. Elevated K(+) and veratridine produced this effect on cholinergic differentiation without significantly altering neuronal survival. Because depolarization causes Ca(2+) entry in a number of cell types, the effects of several Ca(2+) agonists and antagonists were investigated. In the presence of the Ca(2+) antagonists D600 or Mg(2+), K(+) did not prevent the induction of cholinergic properties by conditioned medium. Thus depolarization, either steady or accompanying activity, is one of the factors determining whether cultured sympathetic neurons become adrenergic or cholinergic, and this effect may be mediated by Ca(2+).
    Proceedings of the National Academy of Sciences 01/1978; 74(12):5767-71. DOI:10.1073/pnas.74.12.5767 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. The mechanism by which the fluorescent, cationic dye diS-C3-(5) responds to the membrane potential of red blood cells has been investigated. 2. The dye in aqueous solution absorbs most strongly at 650 nm. Addition of white, haemoglobin-free membranes red shifts the absorption maximum ca. 20 nm, while addition of membrane-free cell lysate results in the appearance of a new dye absorption peak at 590 nm. Thus the dye binds both to cell membranes and to cell contents. The component of the cytoplasm which binds the dye is non-dialysable, presumably haemoglobin. 3. Dye added to a suspension of intact cells shows a strong absorption at 590 nm indicating that the dye has bound to the cell contents and that the membrane is permeable to the dye. 4. The amount of dye which partitions into (and on to) the cells can be determined, as reported by Sims, Waggoner, Wang & Hoffman (1974), from the fluorescence of the dye remaining in the supernatant after the cells are centrifuged to the bottom of the suspension. In most conditions the proportion of the cell associated dye which is either free inside the cell or bound to the outside face of the membrane is negligible compared to the proportion bound to the cell contents. 5. On the assumption that the dye is not actively transported, the ratio of the equilibrium dye activities inside and outside the cell, ai/ao, is determined by the membrane potential according to the Nernst relation. Driving the membrane potenial negative then increases the cell associated dye by increasing the activity ratio and hence ai and the amount of dye bound to cell contents. 6. At the known Donnan equilibrium potential the internal dye activity can be calculated from the external activity. An empirical relation between cell associated dye and internal activity has been determined by measuring the dye partition between cells and medium at different external activities. 7. Using this empirial relation, and providing that any changes in cell composition do not affect the dye binding, the internal activity at any potential can be calculated from the measured amount of cell associated dye. The external activity can be estimated fluorimetrically. The membrane potential is then calculated from the activity ratio. 8. The membrane potenial of cells has been altered by adding valinomycin in the presence of different K gradients. Under the conditions used, the 'constant field' permeability for K-Val is 15-20 times that of Cl. 9. Dye binding to haemoglobin is influenced by pH and thus dye partitioning into cells changes with intracellular pH. Increasing intracellular pH increases the amount of dye partitioned, while decreasing pH decreases this amount. 10. When large potentials are produced with valinomycin there is no change in intracellular pH. This result indicates that in red blood cells intracellular pH is determined by the external pH and the Cl concentration ratio and not by the membrane potentials. 11. DiS-C3-(5) can be used to estimate potentials across resealed ghost membranes...
    The Journal of Physiology 12/1976; 263(2):287-319. DOI:10.1113/jphysiol.1976.sp011632 · 4.54 Impact Factor

Preview

Download
2 Downloads
Available from