Article

Quantum Computing and Hidden Variables II: The Complexity of Sampling Histories

09/2004;
Source: arXiv

ABSTRACT This paper shows that, if we could examine the entire history of a hidden variable, then we could efficiently solve problems that are believed to be intractable even for quantum computers. In particular, under any hidden-variable theory satisfying a reasonable axiom called "indifference to the identity," we could solve the Graph Isomorphism and Approximate Shortest Vector problems in polynomial time, as well as an oracle problem that is known to require quantum exponential time. We could also search an N-item database using O(N^{1/3}) queries, as opposed to O(N^{1/2}) queries with Grover's search algorithm. On the other hand, the N^{1/3} bound is optimal, meaning that we could probably not solve NP-complete problems in polynomial time. We thus obtain the first good example of a model of computation that appears slightly more powerful than the quantum computing model.

0 Bookmarks
 · 
54 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper initiates the study of hidden variables from the discrete, abstract perspective of quantum computing. For us, a hidden-variable theory is simply a way to convert a unitary matrix that maps one quantum state to another, into a stochastic matrix that maps the initial probability distribution to the final one in some fixed basis. We list seven axioms that we might want such a theory to satisfy, and then investigate which of the axioms can be satisfied simultaneously. Toward this end, we construct a new hidden-variable theory that is both robust to small perturbations and indi#erent to the identity operation, by exploiting an unexpected connection between unitary matrices and network flows. We also analyze previous hiddenvariable theories of Dieks and Schrodinger in terms of our axioms. In a companion paper, we will show that actually sampling the history of a hidden variable under reasonable axioms is at least as hard as solving the Graph Isomorphism problem; and indeed is probably intractable even for quantum computers.
    09/2004;

Full-text

View
0 Downloads
Available from

Similar Publications