Zhou GX, Chao L, Chao JKallistatin: a novel human tissue kallikrein inhibitor. Purification, characterization, and reactive center sequence. J Biol Chem 267: 25873-25880

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston 29425.
Journal of Biological Chemistry (Impact Factor: 4.57). 01/1993; 267(36):25873-80.
Source: PubMed


A novel human tissue kallikrein inhibitor designated as kallistatin has been purified from plasma to apparent homogeneity by polyethylene glycol fractionation and successive chromatography on heparin-Agarose, DEAE-Sepharose, hydroxylapatite, and phenyl-Superose columns. A purification factor of 4350 was achieved with a yield of approximately 1.35 mg per liter of plasma. The purified inhibitor migrates as a single band with an apparent molecular mass of 58 kDa when analyzed on SDS-polyacrylamide gel electrophoresis under reducing conditions. It is an acidic protein with pI values ranging from 4.6 to 5.2. No immunological cross-reactivity was found by Western blot analyses between kallistatin and other serpins. Kallistatin inhibits human tissue kallikrein's activity toward kininogen and tripeptide substrates. The second-order reaction rate constant (ka) was determined to be 2.6 x 10(4) M-1 s-1 using Pro-Phe-Arg-MCA. The inhibition is accompanied by formation of an equimolar, heat- and SDS-stable complex between tissue kallikrein and kallistatin, and by generation of a small carboxyl-terminal fragment from the inhibitor due to cleavage at the reactive site by tissue kallikrein. Heparin blocks kallistatin's complex formation with tissue kallikrein and abolishes its inhibitory effect on tissue kallikrein's activity. The amino-terminal residue of kallistatin is blocked. Sequence analysis of the carboxyl-terminal fragment generated from kallistatin reveals the reactive center sequence from P1' to P15', which shares sequence similarity with, but is different from known serpins including protein C inhibitor, alpha 1-antitrypsin, and alpha 1-antichymotrypsin. The results show that kallistatin is a new member of the serpin superfamily that inhibits human tissue kallikrein.

20 Reads
  • Source
    • "In teleosts, the skin mucus lectins possess four apple domains but without a catalytic trypsin domain, thus these proteins cannot cleave BK from KNG. Furthermore, the skin mucus lectins were mistakenly considered as plasma kallikrein in the past and the interaction of apple domains with glycans could be involved in immune functions [29,30]. In fact, HMW KNG can be cleaved alternatively to form anti-microbial peptides and the contact phase system in the defense against bacterial infection is connected to innate immunity [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The kallikrein-kinin system (KKS) consists of two major cascades in mammals: "plasma KKS" consisting of high molecular-weight (HMW) kininogen (KNG), plasma kallikrein (KLKB1), and bradykinin (BK); and "tissue KKS" consisting of low molecular-weight (LMW) KNG, tissue kallikreins (KLKs), and [Lys(0)]-BK. Some components of the KKS have been identified in the fishes, but systematic analyses have not been performed, thus this study aims to define the KKS components in teleosts and pave a way for future physiological and evolutionary studies. Through a combination of genomics, molecular, and biochemical methods, we showed that the entire plasma KKS cascade is absent in teleosts. Instead of two KNGs as found in mammals, a single molecular weight KNG was found in various teleosts, which is homologous to the mammalian LMW KNG. Results of molecular phylogenetic and synteny analyses indicated that the all current teleost genomes lack KLKB1, and its unique protein structure, four apple domains and one trypsin domain, could not be identified in any genome or nucleotide databases. We identified some KLK-like proteins in teleost genomes by synteny and conserved domain analyses, which could be the orthologs of tetrapod KLKs. A radioimmunoassay system was established to measure the teleost BK and we found that [Arg(0)]-BK is the major circulating form instead of BK, which supports that the teleost KKS is similar to the mammalian tissue KKS. Coincidently, coelacanths are the earliest vertebrate that possess both HMW KNG and KLKB1, which implies that the plasma KKS could have evolved in the early lobe-finned fish and descended to the tetrapod lineage. The co-evolution of HMW KNG and KLKB1 in lobe-finned fish and early tetrapods may mark the emergence of the plasma KKS and a contact activation system in blood coagulation, while teleosts may have retained a single KKS cascade.
    PLoS ONE 11/2013; 8(11):e81057. DOI:10.1371/journal.pone.0081057 · 3.23 Impact Factor
  • Source
    • "Kallistatin, an endogenous human serine proteinase inhibitor, was originally known as a tissue kallikrein inhibitor. It binds strongly to tissue kallikrein and is able to inhibit tissue kallikrein kininogenase and amidolytic activities in vitro [10,11]. However, kallistatin has been reported to have various effects as an antiangiogenic, antioxidant, antiapoptotic, and antiinflammatory agent, independent of kallikrein inhibition [12-14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Community-acquired pneumonia (CAP) requiring intensive care unit (ICU) treatment commonly causes acute respiratory failure with high mortality. Kallistatin, an endogenous tissue kallikrein inhibitor, has been reported to be protective in various human diseases. The aim of this study was to assess the correlations of kallistatin with other biomarkers and to determine whether kallistatin levels have a prognostic value in severe CAP. Methods: Plasma samples and clinical data were prospectively collected from 54 patients with severe CAP requiring ICU admission. Seventeen healthy control subjects were included for comparison. Plasma kallistatin, kallikrein, and other biomarkers of inflammation (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, C-reactive protein (CRP)), and anti-coagulation (protein C, anti-thrombin III) were measured on days 1 and 4 of ICU admission. Comparison between survivors (n = 41) and nonsurvivors (n = 13) was performed. Results: Plasma kallistatin was significantly consumed in severe CAP patients compared with healthy individuals. Lower day 1 kallistatin levels showed a strong trend toward increased mortality (P = 0.018) and higher day 1 CURB-65 scores (P = 0.004). Plasma kallistatin levels on day 1 of ICU admission were significantly decreased in patients who developed septic shock (P = 0.017) and who had acute respiratory distress syndrome (P = 0.044). In addition, kallistatin levels were positively correlated with anti-thrombin III and protein C and inversely correlated with IL-1β, IL-6, and CRP levels. In a multivariate logistic regression analysis, higher day 1 CURB-65 scores were independent predictors of mortality (odds ratio = 29.9; P = 0.009). Also, higher day 1 kallistatin levels were independently associated with a decreased risk of death (odds ratio, 0.1) with a nearly significant statistical difference (P = 0.056). Furthermore, we found that a cutoff level of 6.5 μg/ml of day 1 kallistatin determined by receiver operating characteristic curves could be used to distinguish between patients who survived in 60 days and those who did not. Conclusions: These results suggest that kallistatin may serve as a novel marker for severe CAP prognosis and may be involved in the pathogenesis of CAP through antiinflammatory and anticoagulation effects.
    Critical care (London, England) 02/2013; 17(1):R27. DOI:10.1186/cc12507 · 4.48 Impact Factor
  • Source
    • "SERPINA3K, also known as kallikrein-binding protein (KBP), belongs to the SERPIN family. It is expressed in the liver, kidney and ocular tissues, etc [16]–[18]. SERPINA3K was first identified as a specific inhibitor of tissue kallikrein. It specifically binds with tissue kallikrein to form a covalent complex and inhibit its proteolytic activities. "
    [Show abstract] [Hide abstract]
    ABSTRACT: SERPINA3K is a member of the serine proteinase inhibitor (SERPIN) family. Here we evaluated the therapeutic effects of SERPINA3K on neovascularization and inflammation in a rat cornea alkali burn model that is commonly employed to study corneal wounding. Topical treatment of the injured rat cornea with SERPINA3K (20 µg/eye/day) for 7 days significantly decreased the neovascular area, compared with the groups treated with BSA or PBS. The SERPINA3K treatment also ameliorated the corneal inflammation as evaluated by the inflammatory index. Furthermore, SERPINA3K enhanced the recovery of corneal epithelium after the alkali injury. Toward the mechanism of action, SERPINA3K down-regulated the expression of the pro-angiogenic and pro-inflammatory factors, vascular endothelial growth factor and tumor necrosis factor-α and up-regulated the expression of the anti-angiogenic factor, pigment epithelium-derived factor. SERPINA3K specifically inhibited growth of vascular endothelial cells. Meanwhile, SERPINA3K significantly up-regulated the expression of EGFR in the corneal epithelium. These findings suggest that SERPINA3K has therapeutic potential for corneal inflammation and NV.
    PLoS ONE 01/2011; 6(1):e16712. DOI:10.1371/journal.pone.0016712 · 3.23 Impact Factor
Show more


20 Reads
Available from